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CHAPTER 1
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1.2 N =-. ILE (pu cos 0 + 1, sin ) ds,

TE
+ ILE (p,cos@—7,simf) ds,

ds cos 6 =dx
ds sin 8 = -dy

Hence,

TE TE |
N=- [ @ue-podct [ () dy

N =- JZ: [(Pu - Pe) = P, - Pe)] dX + jz (te+1,) dy

Divide by 9o S =g (1)

__I:J_._:__]‘_ ITE [pu_pmJ“(pf-pmJ dX"}—l‘ J.TE [__T_u_
9.c c -ILE o 9 c " Aq..

o= éj': (Cp[ —cp“) dx+% J:ZJ (cf“ +sz) dy

This is Eq. (1.15).
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This is Eq. (1.16).
Mig= | Z: [(Pu cOSB + Ty sINO)X — (pu $ind - 7, cosB)y] ds,
+ .[z [-p, cosB+ 1, sin@)x + (p, sinB + 1,cos0)y] ds,
£l T =
Mg = ILE Pu-p,)xdx- L_E (tut T, )xdy
+ [ u-pdydy+ [ (mtrt)ydx
- u-P YAy LE! u 1Y
' , TE : . ' .
Mis= [ [Gu-p) =G -plxdx- [ (rr)xdy

CTE TE
[, u-p)—(,-pa)) ydy+ [ (mrT,)ydx

Divide by gec’™:
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Cpn.. ::2— [J-D (Cp“ —Cp{)xdx- j-u; (Cfu 4{lf£) x dy

TE c
+ ], (€, =Cydy+ [ (C+C;) yx]

This is Eq. (1.17).
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M'ig=-(p,- Pu) Y .

N = J-: (po-pu) dX=(p,- Pu) ©
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For a flat plate, 8 = 0 in Eqs. (1.7) — (1.11). Hence,

N= 7 @epodx= [ F2x10° o1+ 119 % 10 dx

3

N =2 x10* [%- 24x]) +11.19x 10%)} = [L12x 10°
A= [ @i [ (B1x02+ 2885 ax

A =[1274x"%! =

L' =N’ cosd - A’ sino.=1.12 x 10° cos 10° — 1274 sin 10°

=1105x10°N

D’ =N sina. + A’ coso. = 1.12 x 10> sin 10° + 1274 cosa
=R.07x10°N

Mie= [ [po-p,Jxdx= [ [2x10°c1¥-119x 10 x dx

+2x10* [-{———Q—X*+X2—F]L- [0.595x 10! =[5.78 x 10° Nl

Mg =M g+ L (c/4) =-5.78 x 10° + 1,105 x 10° (0.25)

=3.02 x 10% N/m|

. _ ' 4
xop=- e (78X 10)  parer

N’ 112 x 10°




1.5
€ ™= ¢y COSOL - Cp SINOL

=(1.2) cos 12° = (0.3) sinov = [1.18
Cg = Cp SINCX + ¢, COSTL

=(1.2) sin 12° + (0.3) cosa. = 10.279

1.6 c,=¢, cosa+ cq sina

Also, using the more accurate N’ rather than L' in Eq. (1.22), we have

C M'c/4 c (cmc-"‘J
X = —— = —
P 4 N 4 c

Hence:
of®) Cn L Xgle
2.0 0.0498 1.09
0 0.25 0.41
2.0 © 044 0.336
4.0 0.639 0.306
6.0 : 0.846 0.293
8.0 1.07 0.284
10.0 1.243 0277
12.0 1.402 . 0271
14.0 1.52 0.266
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Note that x¢, moves forward as o is Increased, and that it closely approaches the quarter-
chord point in the range of a of 10° to 14°. At higher angles-of-attack, beyond the stall (o >
16°), xop Will reverse its movement and move rearward as o continues to increase. Compare
the above variation with the center-of-pressure measurements of the Wright Brothers on one
of their airfoils, shown m Fig. 1.28.

1.7 K =3 (mass, length, and time)
f1 (D, pw, Vo, €, 2)=0  HenceN=5
We can write this expression in terms of N - K =5 — 3 = 2 dimensionless Pi products:
f (T}, T)
where
I = 15.(Pec: Veos €, D)
I =4 (Poy Vi €, 8)

Let I = p. V.l edD



1=(m £ (£ ) £ £ tH)=0
mass: a+1=0
length: -3a+b+c+1=0

time: -b—-2=0

Hence:
D
,.V.c 2, v 22
zpm oy
;= Dz
9.¢

Let  Ih= Pt Vo g’
1=(m £t £° (¢ £‘2)d =0
mass: a=0
length: -3a+ 1 —Fb+d= 0

time: -1-2d=0

Hence:
v
==
Jes
Thus:

=]

D V,)|
£y (I T)= 6 | = —2= | =0
.2 (HI, 2) 2{ Cz _\/C—g-J

-

[0) ¢

-

a=-]
b=-2
c=-2
a=0
d=-1/2
b=-172

1.8 Dyw=1 (Pes Ve, €, fucy Cpy Cv)

K =4 (mass, length, time, degrees)



2 (Dw, Pees Vs, €, 8er, Cp, &) = 0
Hence, N= 7. This can be written as a function of N— K =7 —4 = 3 p1 products:
f3=I1; IL, 1) =0
where:
[ = £4 (P, Vo, €. Cp, D)
[T =15 (Peo, Vo, €, Cpy o)
3 = £ (Peo, Ve, €, Cps Cv)
The dimensions of ¢, and ¢, are

_ energy _ (force)(distance) _ (mft™)(4)
mass(®) B mass(®)  m(®)

[eo] = £7t7 ()" where (°) degrees.

For H] :

pm] V.l cF ¢, D=1IT

(@ £3) (£ (O (L) () (m £ 1) =1

mass: 1+1=0 i=-1
length: -3i+j+k+2n+1=0 n=0
fime: - —2n-2=0 j=-2
degrees: -n =0 k=-2
Hence:
= 5, or Il = —
p. V¢ q,°¢
ForIL:

I~ pmi Vo O cpk -



L= Gm 3 (£ € (2F (22 O (2

mass: 1=0 i=0
length: -3i+1+j+2k+n=0 - k=0
time: -1-2k—-n=0 n=-1
degrees: -k =0 j=0
Hence:
- Ve
a,
For I1s:

Tl = po Ved c* Cp Cy

1=(m £3) (£ 25226 O (£ 1)) ¢

mass: 1=90 i=0

length: -3i+j+k+2n+2=0 n=-1

time: -j-2n-2=0 7=0

degrées: n—1=0 k=0
Hence:

II; = —Z-"ﬂ . We can take the reciprocal, and stil]l have a dimensionless product
Hence, '

jg =Yy

“p -

Thus,

or,




CD = f(Mm, Y

1o .
M,

e

a_Vy [T, _100 [800
a, V,JT, 200V200

1 2

Hence, the Mach numbers of the two flows are the same.

Re, _ pVie, [ﬁ*j AL ;r_z_( 123)(@]@ 800 _ 1 2cs
Re, pVye,\u,) p Ve, VT, \1739/1200/\2/V200

The Reynold’s numbers are different. Hence, the two flows are not dynamically similar.

1.10 Denote free flight by subscript 1, and the wind tunnel by subscript 2. For the lift and
drag coefficients to be the same in both cases, the flows must be dynamically similar. Hence

M; =M,
and

Re;=Rey
For Mach number:

.Y

a, 2,

Since a o T, we have

vV, 250

167 1)

V2
Jn T, 223
V. V,c -
For Reynolds number: LM
Hy H;

Assume, as before, that p o NT. Hence

PVl _ pViG

JL T

10



or,

A A [ © ] _ (0414)(250) (5}

N 23 \1
" Or,
PV 3465 )
N
Finally, from the equation of state:
oLy = P2 = 101 x 10° 3519 3

Eqgs. (1) — (3) represent three equations for the three unknowns, pa, Vi, and T,: They are
surnrnarized below: '

J% =167 (D

% =34.65 )

p2 T, =351.9 (3)
From Eq. (3):

pa=351.9/T “ -

Subst. (4) into (2):

| 351.9( \

= E]=34.65 )

3519

Subst. (1) into (5): T

(16.7)=34.65

Hence,

11



(351.9)(16.7) .
T,=—22 < 169.6°K
L (3465

From Eq. (1): V2=16.7 /T, =167 1696 =[217.5 -

Sec
. 3519 3519 kg
From Eq. (3): = = =207 —
R T T
1.11 pp=pa.-pgAh
=1.01 x 10° ~ (1.36 x 10%)(9.8)(0.2)
Py =743 x 10* N/m’|
1.12  Weight = Buoyancy force + lift
W= B + L
B=(15,000)  (1.1117) (98) = 1.634x10°N
\—Y_J [ S

volume  air density  acceleration
() at 1000in  of gravity
Ckg/m3 ) (m/sec)

I
ra

Qo= = P Voo = — (1.1117) (30)* = 500 N/m*

N | =

1
2
S = nd¥/4 = (14)%/4 = 153.9 m®

L= g S CL=(500)(153.9)(0.05) = 3487 N

Hence:

W=1.634x10°+3847= [.67x 10°N|

1.13  Let us use the formalism surrounding Eq. (1.16) mn the text. In this case, cq = C,, and
from Eq. (1.16), neglecting skin friction

12



= [ (c, -c, )y | (1)

c

From Eq. (1.13) in the text, Eq. (1) above can be written as

1 e ,
g =~ [, (C,.~Cy) Csinods) @)
Draw a picture:

Following our sign
convention, note
that 0 1s drawn
counterclockwise
in this sketch, hence
it is a negative
angle, -6.

From the geometry:
- B=n-¢
Hence, sin (-6) = - sin 0 = sin (-6) = cos ¢

Substitute this into Eq. (2), noting also that ds = rd¢ and the chord ¢ is twice the radius, ¢ =
2r. From Eq. (2),

Cq= ~—1- ITE (Cp“ —Cpt) cosprdad

LE

cd——--;— J‘m (va —Cpt)_cosd)d(b

TE 1 TE .
ca=o [ Cp cos0do = f. C, costpdo 3)

Consider the limits of integration for the above integrals. The first integral is evaluated from
the leading edge to the trailing edge along the upper surface. Hence, ¢ = 0 at LE and = at TE.



The second integral is evatuated from the leading edge to the trailing edge along the bottom
surface. Hence, ¢ =27 at LE and = at the TE. Thus, Eq. (3) becomes

]. * ]_ T V
cd=—2— Io C, cosddd 5 LE C,, cosd¢dé 4)
In Eq. (4),
C, =2 cos® ¢ for0<¢ <m/2
C, =0 for%ﬁ(l)Sﬂ
c = 5 37z< <
b = 2008 ¢ forz—_d)_}n
C,, =0 forn‘ﬁ(})ﬁ—gz£

Thus, Eq. (4) becomes
cg= J- s cos’ ddo- Jim cos’ od ¢
Since cos’ ¢ d = (% sing)(cos” ¢ + 2), Eq. (5) becomes
2
=15 sing)oos* 6+ D)7 - [( sind)(cos’h + 212
3

co= (%)(1)(2% (XD

1.14

14
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=

Consider the a arbitrary body sketched above. Consider also the vertical cyhnder element
inside the body which intercepts the surface area dA; near the top of the body, and dA; near
the bottom of the body. The pressures on dA; and dA; are p; and p; respectively, and makes
angles 0; and 6, respectively with respect to the vertical line through the mlddle of dA; and
dA;. The net pressure force n the y-direction on this cylinder 1s:

dFy=-p) cos 8, dA) +p; cos 6, dAy )
Let dA, be the projection of dA; and dA; on a plane perpendicular to the y axis.

dAy=cos 6; dA; =cos 0, dA»
Thus, Eq. (1) becomes

dFy=(p2—p1) dAy @

From the hydrostatic equation

hz
p-p= [ opgdy 3)

Combining Eqs. (2) and (3),

by
dry= [ pgdyda, @)

However, dy dAy = dV = element of volume of the body. Thus, the total force in the y
direction, Fy, is given by Eq. (4) integrated over the volume of the body



B ey

Force onbody  Weight of fluid displaced by body.

1.15  From Eq. (1.45)

O, = L _ 2w 2(2950)
4.8 P, V.S (0.002377)V,*(174)
14265

CL= — (1

0

Also,
Cp=0.025+0054C2 ()

Tabulate Egs. (1) and (2) versus velocity. .

L C
Vo e g 5
(ft/sec) CL Cp DT C,
70 2.911 0.483 6.03
90 1.761 0.192 - 917
110 1.179 0.100 11.79
130 0.844 0.063 13.40
150 0.634 0.047 13.49
170 0.494 0.038 13.0
190 0.395 0.033 11.97
210 0.323 0.031 10.42
230 0.270 0.029 9.31
250 0.228 0.028 8.14

These results are plotted on the next page.

16



4
4G L _CD
74 ?3“ 16./4
2’7- 121 10./2
28181 {o08-
O, & 1 0,06
0.4-; 41 T O _D% :
o2 2t - . N B N

0 0= ~ ?z) ' /;;o /.‘;'o o | /7%0' /90 lz;.o 2;;:_1 .?.;'a ©

FLICGHT VELOCITY, \ ( FT/sec)

Examining this graph, we note, for steady, level ﬂight:

1. The lift coefficient decreases as V., increases.

2. At lower velocity range, the drag coefficient decreases even faster than the lift
coefficient with velocity. (Note that on the graph the scale for Cp is one-tenth
that for Cp.)

3. As a result, the lifi-to-drag ratio first increases, goes through a maximum, and
then gradually decreases as velocity increases.

Tt can be shown that the maximum velocity for this airplane is about 265 ft/sec at sea level.
As seen in the graph, the maximum value of L/D occurs around V. = 140 ft/sec, which 1s
much lower than the maximum velocity. However, at higher velocity the value of L/D
decreases only gradually as V, increases. This has the practical implication that at higher
speeds, even though the value of L/D 1s less than its maximum, it is still a reasonably high
value. The range of the aircraft is proportional to L/D (see for example, Anderson, Aircraft
Performance and Design, McGraw-Hill, 1999, or Anderson, Introduction to Flight, 4™ ed.,

17



McGraw-Hill, 2000). To obtain maximum range, the airplane should fly at the velocity for
maxium L/D, which for this case 1s 140 ft/sec. However, one reason to fly in an airplane is
to get from one place to another in a reasonably short time. By flying at the low velocity of
Vo =140 ft/sec, the flight time may be unacceptably long. By cruising at a higher speed, say
200 ft/sec, the flight time will be cut by 30%, with only an 18% decrease in L/D.

18



CHAPTER 2

pAs

2.1 . f3=—ﬁ pdS

If p = constant = p.,

E: —pwﬁ pd§ (1)

However, the integral of the surface vector over a closed surface is zero, 1.e.,

ﬁdgzo

Hence, combining Egs. (1) and (2), we have

F=0

22
Upper Wall Fr Ox)
L L. L L L r L /_f//_ £ L. L 7
fa b
|
‘ |
l
: S |
e = i__gjl
_______________ -r
| © ?I . x
| :
£ _ 4]

Y A A A YA A
Lower Wal/ &["J

19



Denote the pressure distributions on the upper and lower walls by pq(%) and p, (%) respectively.
The walls are close enough to the model such that p, and p, are not necessarily equal to p...
Assume that faces ai and bh are far enough upstream and downstream of the model such that

P~ P= and v=0 and ai and bh.

Take the y-component of Eq. (2.66)

L=-ff (oV a9 v- [[ (pdS)y
s

abhi

The first integral = 0 over all surfaces, either because V- ds = 0 or because v =0. Hence

L =- J]. (Pd_)S)Y =‘[J. Pu dx - J. p, dx]

abli

Minus sign because y-component is in downward
Direction. ‘

Note: In the above, the integrals over 1a and bh cancel because p = p» on both faces. - Hence

h b
L= j p, dx- | pedx

dy _v_oy/(x*+y) ¥

2.3 2 2y
dx u cx/(X"+y°) x
dy _dx
y X

hy=fnx+c¢i=4Ln(cz2X)

The streamlines are straight lines emanating from the origin. (This is the velocity field and
streamline pattern for a source, to be discussed in Chapter 3.)

24 W_Y_ X
dx u y
ydy=-xdx

20



y2 = —x2 + const
) .
X"+ y2 = const.

The streamlines are concentric with their centers at the origin. (This is the velocity field and
streamline pattern for a vortex. to be discussed in Chapter 3.)

2.5 From inspection, since there is no radial component of velocity, the streamlines must be
circuldr, with centers at the origin. To show this more precisely,

u=-Vgsin=-cr b =.cy
T

X
v=VgcosO=cr — =cx
T

E/z + xf = const.

This is the equation of a circle with the center at the origin. (This velocity field corresponds to
solid body rotation.)

dx u X

Iny=x nx+c¢ X

vl a \\‘ /f

The streamlines are hyperbolas.




27 (a) P _y. 5
v Dt
In polar coordinates: V ~ ‘:’/ =17 V) + 1N,
ra T 08
Transformation: X=rcos 6
y=rsin0

Vi=ucos9+vsinb

Ve=-1usin6+vcosB

22



cx  _ cr cosf ¢ cosd

x* +v?%) r’ r
- cy _ o sind _ c sinf
x* +vY) T’ T

c 5 c .5
r=—cosO+ — sin’d=
r r

H {0

c . c A
Ve=- — cosd sinf + — cosO sinf =0
r T

V'V =

(b) From Eq. (2.23)

Vx V =g, —

o [V, V, 1V,
‘I r row

VxV=¢,[0+0—0]=)

The flowfield is irrotational.
28  u= cy _cr smf _ ¢ sinf
’ (x* +v%) r? T
y= "X _ @ cosg _ ¢ cosd
(x2 +v%) r’ T

V,= S cosh sind - = cosd sind =0
Cr r

C .2 C 2 C
Vg=-— sin@-—cosB=-—
T T T

@+ 2L —g40-7

(a) V‘%Z-l-—a-
ré&t r 8



z

©  vxe e[ g 150

I
&
—
gurs
|
ot IO
]
o
L

Vx Ve @ except at the origin, where r = 0. The flowfield 1s singular at the origin.

2.9 V.=0. Ve¢=cr

VxVe=e [M+E_l?ﬁ9}
& r r o

= e, (ctc-0)=2ce,

The vorticity is finite. The flow 1s not irrotational; it is rotational.

2.10

24



Mass flow between streamlines = A
Ay =pVAn

Ay =(-pVg) Ar+p V; (1)
Let cd approach ab

dy=-pVpdr+prV,do

Also, since ¥ = v (1,6), from calculus

dy =¥ a1 9 49
a &0
Comparing Eqgs. (1) and (2)

By
—pVy,= 2
P Vo

and

or. -

(1)

@)

25

(D

@)



Comparing Eqgs. (1) and (2), f(x) and f(y) = constant

{\y=cxy+consg

u=cx= 5—: ¢ = cx” + f{y)

X
¥

5 0T

v=-cy=

Comparing Eqs. (4) and (5), f(y) = - cy” and f(x) = cx*
0 =c x*~ )

Differentiating Eq. (3) with respect to x, holding v = const.
d
0=cx LA cy
dx

or,

Differentiating Eq. (6) with respect to x, holding ¢ = const.

0=2cx—2¢3r£1y~
dx

or,

@) -
dx

g=const

Comparing Eqgs. (7) and (8), we see that

w=const

dx

@ g

¢=const

Hence, lines of constant y are perpendicular to lines of constant ¢.

3)

(4)

(%)

(©)

(7

Y

26



2.12.  The geometry of the pipe is shown below.

\,{: SO0 on free
—
f

i
e |

‘{2 = /éﬁ.—y:;/_;-cr. fand ’

As the flow goes through the U-shape bend and is tarned, it exerts a net force R on the internal
surface of the pipe. From the symmetric geometry, R is in the horizontal direction, as shown,
acting to the right. The equal and opposite force, -R, exerted by the pipe on the flow is the
mechanism that reverses the flow velocity. The cross-sectional area of the pipe inlet is wd*/4

~where d is the inside pipe diameter. Hence, A = nd*/4 = n(0.5)"/4 = 0.196m”. The mass flow
entering the pipe is

m = py A V) = (1.23)(0.196)(100) = 24.11 kg/sec.

Applying the momentum equation, Eq. (2.64) to this geometry, we obtain a result similar to Eq.
(2:75), namely

R=-4f (pv-as)v 1)

Where the pressure term in Eq. (2.75) is zero because the pressure at the inlet and exit are the
same values. In Eq. (1), the product (p V * dS) is negative at the inlet (V and dS are in opposite
directions), and is positive at the exit (V and dS) are in the same direction). The magmnitude of p

V - dS is simply the mass flow, m. Finally, at the inlet V) is to the right, hence it is in the
positive x-direction. At the exit, V3 is to the left, hence it is in the negative x-direction. Thus,
V,=-V,. With this, Eq. (1) is written as

R=‘['D.1 Vi+ Il’le]:l;}(Vr—Vz)

= m [Vi— (-V)]=m (2V))

R= (24.11)(2)(100) =

27



CHAPTER 3

3.1  Consider steady, inviscid flow.

X-momentum; pu @ + pv @ + pw_fa_l =_ @
X & oz 174
y-momentum: pu — +pv — + pw _‘?ﬁ = - _@i
a &
Z-momentum: pu ﬁ + pv éw_ + pw Zud. - f‘g
174 az 774

Multiply (1), (2), and (3) by dx, dy, and dz respectively:

uf?l—l-dx-i-‘védx+wé dx=-~1——0fl—3~dx,
X X oz p X
X 1 &
n—dy+v-—dy+w ——dy=-——4d
y Y P Yy & y

u@ dz—}—v.@ dz-{-wﬁ dz=-

Add (4) +(5) + (6):

u[@dx+5‘?—v—dy+ﬁdz) +v (édx+—a—vdy+é\1dz]
& & & 24 & &

+w [@-duia—'dwé‘idz) -1 [@dx+@dy+ip-dz]
& & @ ) pl&x & a

For irrotational flow (see Eq. (2.119)): Vx V=0

-

Hence:

SR

M
o

-

S
I
|

LA
T &

»
¥

Subt. Eqgs. (8) into (7):

28
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u[édx+ﬁdy+édz] +v (édx—i—ﬂdy_{_ﬁdzj
X & z 074 & &

+w [ﬂdx+5a—h’-dy+é}v—dz) -1 (@dX‘r—“-dy-F épdzj
1% 024 oz p \éz &

udu+vdv+wdw=-ldp

ld(uz+v2+w2)= 14 (VH=Vdv =- 1 dp
2 2 Yo,

dp=-pV dV which integrates to

p+ —;— p V2 = const.

for incompressible flow.

32

py = 2116 Ib/ft’; p, = 2100 Ib/ft, Ay/Ar = 0.8

V]:-{ 2(2116—2100) _[547 fosed

= (o

2 .
33 pi-p=YepV? {[ :-'J —1} V2 (1.23)(90) [(1/0.85)* — 1]=[1913 N/m]

2

2 wAh

s \fp[l—(Az 1A




m

SBCZ

W= png=(1.36 x 10% (9.8 )=1.33x10° N/m?

A
Ah=10cm=0.1m; p=123 kg/m®, —Lt=—
A, 12

2(133 x 10°)(01) _

=y

35 ‘pr-p2=wAh=(1.33x10%(0.1)=1.33 x 10* N/m?

V,= 147 m/se

p2=p1—1.33%x10°=1.01x 10° — 1.33 x 10* = 8.77 x 10* N/m?

Po=P2+-% p V2=877x10"+ % (1.23)(147)* = [L.01 x 10° N/m?|

Note: It makes sense that the total pressure in the test section would equal one atmosphere,
because the flow in the tunnel is drawn directly from the open ambient surroundings, and for
an 1nviscid flow, we have no losses between the inlet and the test section.

36 Po=Pwt % p Vo

v.e [2@.=P.) 2\/2(1.07—1.01) x10° [ m
L0 123 sec

2 2
37 c,,zl,(vl) -1-(2Y -7

. 988

=7 -+
38 | V=V_1

@

0 0 0
Ve V' V= +;£+¢=@
- x & [

Vo =1 = constant
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It 1s a physically possible incompressible flow.

0 0
=7 (0-0)- 3 (O-Z;g).& (O—%/)'

TR

—-
=

VXV =

NTAN

g2
& &

“u ;oyfo

Vx V=0 The flow is 1rrotational.

3.9  Fora source flow,

r = er
7
In polar coordinates:
v v=1Z6vy+ 10
r & r o0
v 9ol A, 140
& 2m r 90

Hence, the flow is a physical possible incompressible flow, except at the origin where 1 = 0.

. What happens at the origin? Visualize a cylinder of
~ ( Yr -

\ radius r wrapped around the line source per unit depth

perpendicular to the page. The volume flow across this

cylindrical surface is



-

gﬁv-éfs M

Since we are considering a unit depth, then we have the volume flow per unit depth. This is
precisely the definition of source strength, A. Hence, from (1),

A = constant = cﬁ V- oas : )

s

From the divergence theorem:
H v-as=4f vV 3)
s v
Combining Egs. (2) and (3)
Cﬁﬁ (V- {)7) dV = A = constant _ (45
Shrink the volume to an infinitesimal value, AV, around thg origin. Eq. (4) becomes

(V-V) AV= A

Taking the limit as AV — 0

(V‘{;)z lim z%-_zoo. Hence V-V = o at origin

N
To show that the flow is irrotational, calculate VXV .

e T e, e, e e,
> 1 a 1 17 1 J g 2
V xV=- - = — = — — —
T a a0 V74 I a a0 oz
V. 1V V. Ao 0
27




Hence,

V xV =0 everywhere.

ll

Ve X;

- -2
X v, 22
P &
P _y. 9,
& s

Hence, Laplaces equation:

¢ ¢
PR

Similarly, for v =V y;

=0+ 0 =0 is identically satisfied.
. vA
N o, 2 Y =0
P X
=2
Y _y, Z¥ g
& &

Hence, Laplaces equation:

Sy, Oy
ﬁjl

=0+ 0=0is identically satisfied.

Hence, Laplace’s equation

1&’[0”;25)
——r—+
T & &

ap A1 52515 Al
S o S e

& 27t & 271’
2
@:O,é-—-f—:o
0 ¢ -
o
-2 ~
199 19 X1 4-0
2 38 r ar

1s identically satisfied.

Ly
(e8]



=—=0;, =

v & &’
dy_AN Ty _
a0 2x’ ap*

Lo ), 5W=1§(0)+~1T(0)=o
I I

is identically satisfied.

3.12 The stagnation point is a distance A/27V, upstream of the source. Hence,

A =1, 0or A=2nV,
27V,

The shape of the body is given by

y=Varsing+ 2 =2
27 2
or,
r8inb+ g= A
22V, 2V,
or,
27V 27V
rsin 9+ i Z2.0= AL
2NV 2V,
or,

ksinB+6=mn] Equation of the semi-infinite body.




O(rad) r X =r1cosh Y =1 sinb
T 1 -1 0
3 1.0033 -0.990 0.1416
28 102 -0.961 0.3416
2.5 1.072 -0.859 0.6416
2.0 1.255 -0.522 1.142
72 1.57 0 1.57
13 1.91 0.511 1.84
1.0 2.54 1.372 2.14
0.75 3.509 b 237 2.39
0.5 5.51 | 4.84 264

Cartesian Coordinates of Body

To plot the pressure coefficient:

0T,

27V Y
VFZVM,COSG-FA =Vecos 0+ A =Veocos90+ —
2x 27 T
Ve=-V,sm 06
vV
- =cose+—l-
V., T
—=-5in0

vy (v (v, 2 ] 2 |
(——] =[ rj +[-—~3+J =<:os€+—-—co‘s,9~}-—2-1—31'11267=1+~—cos¢9+—2
V. T r T T



v, T r?
B(rad) I G
s 1 1.0
3 1.00 0.98
2.8 1.02 0.886
2.5 1.072 0.624
2.0 1.255 0.0283
/2 1.57 -0.4057
13 1.91 -0.554
1.0 2.54 -0.580
0.75 3.509 -0.4982
0.5 551 -0.352
301
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Atpoint A: Velocity due to freestream =V,

Velocity due to source = _A
27(r+b)

(note that it is in the negative x-direction)

Velocity due to sink = GA)
27(r +b)

(Note that it 1s in the positive x-direction)

Total velocity at Point A:
Vi=V A 1 L 1

“ 27 (1=b) 27 (t+Db)
From point A to be a stagnation point, Vo = 0.

O=Vm+-£[ ! + ! ].
2r (r+b)y (r—b)

v A [ a2
27z | (r+b)r—b) 27 1 -b?

Vm(rz—bz)zzA—ﬁ (2b) = %‘3

r= _Ab + b
7V,
= A_b bZ
7V,
314 v 1N O
: & 1 59
For a doublet: oy = - i sin ¢
2T r
a x cosé
o o @

%_272'1'



Substitute (2) into (1)

op 1

& T

( K cos@] K cosé

27 1 27 1°

Integrating with respect to r

RENE

or,

315  y=(Varsind) [1- R;}

I

V=

N e (Vo cos0) (1 - REJ

o6 r’

H | =

2
Vo= W <. (1+R—2] V., sinf
I

2\ 2 . 2\ 2
VZ:V,2+V92=[1—R j szcosze+[1+R] V.. sin’8

2 2
I Ir

2 2\ ?
Co=1- v =1- (1—%} cos°0 - (1 B EJ sin?e

At the smfacé, =R

Cp=1-45sin’0

316 From Eq. (3.93): P = (1 - R_] cosO



i

- [1+—RT] sind
T

At any given point (1,8), V; and V, are both directly proportional to V.. Hence, the direction -

From Eq. (3.94): %"—

of the resultant, V, is the same, no matter what the value of V., may be. Thus, the shape of

the streamlines remains the same.

317 FromEq. (3.119): —r= [17 R_:]cose
=

Vw

v R*Y} . I
F Eq. (3.94): —9=-[1+——J 0 -
Tom Eq. ( ) o 7 sin =

Note that V¢/V,, is itself a function of V, via the second termn. Hence, as V., changes, the
direction of the resultant velocity at a given point will also change. The shape of the

streamlines changes when V., changes.

318 L'=peu VeI

I'- L = 6 0.163 m*/sec
PoV, (123)(30)

@
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3.19 At standard sea level conditions,

0w = 0.002377 %‘iﬁ

slug

=3.737x 107 ———=
e (Ft)(se0)

Also:

£

V=120 mph=120 (8—8) ft/sec =176
60 sec

G = % P Voo = S (0.002377) (176)* =36.8 Tb/ft*

Forthe struts: D=21in=0.167 ft.

Re=PYD _ (0.002377)(187.7)(0.167)
)23 3737 x 107

=199,382

From Fig. 3.39, Cp = 1. The total frontal surface area of the struts is (25) (0.167) = 4.175 ft*.
Hence,

Drag due to struts:

Ds=gw S Cp = (36.8)(4.175)(1) = 153 1b

For the bracing wires: D= 535 in=0.0078 ft

Re=199382 (O'OO;ISJ =0312

From Fig. 3.39, Cp = 1. The total frontal surface area of the wires is (80) (0.0078) = 0.624
ft*. Hence,

Drag due to wires:
Dy == S Cp = (36.8)(0.624)(1) =23 Ib

Total drag due to struts and wires = Dg+ Dy =

153 +23=[176

41



The total zero-lift drag for the airplane is (including struts and wires)

Cp. =G S Cp, = (36.8)(230)(0.036) =

Note that, for this example, the drag due to the struts and wires is

768 = (.38 of the total

drag —i.e., 58 percent of the total drag. This clearly points out the drag reduction that was
achieved in the early 1930’s when airplane designers started using internally braced wings
. with one or more central spars, thus eliminating struts and wires completely.

3.20 The flow over the airfoil in Figure 3.37 can be syntheized by a proper distribution of
singularities, i.e., point sources and vortices. The strength of the vortices, added together,
gives the total circulation, I', around the airfoil. This value of T" is the same along all closed
curves around the airfoil, even if the closed curve is drawn a very large distance away from
the airfoil. In this case, the airfoil becomes a speck on the page, and the distributed point
vortices appear as one stronger point vortex with strength T'. This is exactly equivalent to the
single point vortex in Figure 3.27 for the circular cylinder, and the lift on the airfoil where

the circulation is taken as the total I is the same as for a circular cylinder, namely Eq.
(3.140),

L'=po Vo T
f‘l
— @#ﬁ//e
o \d)’:fancr
7
(1 away
—_ = / _ N\
DOrstributesds A
‘ ' S99 Gt Larrhey é ! . Bt
l @?,%‘ S Vorfex }
\ /
. — - -~ - \ /
N /
e - g
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CHAPTER 4

4] qw::_].-_ pmvwzz

5 (0.002377)(50)* = 2.97 Ib/f*

[ —

¢, =0.64 and ¢, =-0.036

L' =qus c, =(2.97)(2)(1)(0.64) = 3.80 Ib per unit span|

M'as=qe Sc ¢, =(2.97)(2)(1)(2)(-0.36) = -0.428 ft/Ib per unit span|

42 Qu =

Pw Ve = — (1.23)(50)* = 1538 N/m”

b |

R S -
g8 (15382

From Fig. 4.5,

D Vos o2
DU _g4 PV ds,+qr V- ds
Dt ) Dt .
Dds:d{;

Dt

Hence, the second term in Eq. (1) becomes
— — V2
§ v-av={ d(—-j:()
‘C [ 2

From the momentum equation,

43



DV 1

Dt

Vp (neglecting body forces)
yo,

Hence, the first term in Eq. (1) becomes

— ds=-<§ %Vp' gs=-<j. dp

: P

When p = const, or p = p(p), then

dp |
»4 Py Hence, from Eq. (3)

c

Yz,

Substituting Eqgs. (2) and (4) into (1), we obtain-

Dbr_

Dt

details (pp. 239-242).

“4)

0 Note: See Karamcheti, Ideal-Fluid Aerodynamics. for more

44

M'e=-pu Ve | £7() d

T C C . .
=-pw Vo j - (1-cos0) 0 (1), s A0

2

=-pmvw%2avm [7 (@ —cos) do

C2

=- aoVao —Q
P 2

. 2 T
—_— m‘c ——
a 2

T _ ] | 2
[5}“‘(5"”"??‘3

This 1s Eq. (4.36).

2 T

435

¢, =2 m o where o is in radians. Hence

44



15
= ——|=0.164
G (57,3] 0.164
¢y, = - ¢/1=10.041

4.6

(a)
X dz X
For0< —-<0.4: (—) =02-05 (__]
c dx/ c
For 0.4 < 2<1: {ﬁ] =0.0888 — 0.2222 [Ej
c dx/, c
Since x = % (1-cosB), then
dz :
(E—) =-0.05+025cos0, for0<0<13694
X/

(%) =-0.0223 + 0.1111 cos, for1.3694<8<n

-2

Q=g = - 1 J"T — (cosB-1)de
jr o

dz
dx

T

1 13694 ‘ ) 1
= ._ J' (-0.05 +0.25 cos6){cosB - 1)dO - — J.
T de 4

13694

"(-0.0223 + 0.1111 cosO){(cos6 - 1) dO

1 1.3694 2
=-= [ 77 (0.05-03 cosd +0.25 cos’) dO
7? o

2L [ (0.0223-0.13334 cosd +0.1111 cos’0) d6
7 13694

— 1 10.050 - 03 sin0 + 0.25 (g +% $in28) 136

s

45




1 ) g 1 .
- — [0.0223 ©-0.1334 sinH + 0.111 (§+Z $1n20) |7 5694

T

S [0.06847 - 0.2939 +0.1712 + 0.0245] - e [0.0701 + 0.1745]
T b4

+ L 10,0305 -0.1307 + 0.0761 + 0.0109]
/A

7w

(b)

c, =2 7 (0 + oy =) Where o 1s in radians

¢, = 22 [3-(416)]=p782
37,3 _

47 A= 2 _[K _d_z cosH do
x “°o dx
2 1.3694
= — f (0.05 +0.25 cos0) cost db
T s}

2 [ (:0.0023+0.1111 cost) cosd do

¥ 13694

= 2 [ (0.05 cosd +0.25 cos’) 46 +
7Z‘ o

2 f” (-0.0223 cos8 + 0.1111 cos’8) db
jr -

1.3694
=2z [-0.05 sin® + 0.25 (i‘I 41 sin20) ],
T 2 4

+ z [(-0.0233) sin6 + 0.1111 (ngl sin29)]f3694
T 2 4

46



2 [-0.04899 + 0.25 (0.6847 + 0.09800) + 0.1745
T
+0.02185 — 0.1111 (0.6847 + 0.09800)]

A1 = (0.2561) 2 = 0.1630
T

dz
dx

A2=—2— j cos20 do
. Vin o

2

2 1.3694 i x
== j (-0.05 + 0.25 cosH) cos 20d0 + = j (-0.0223
T o T 1.3694

+0.1111 cosB) cosb d6

= [i(—0.0S) §in 20 + 0.25 (Smg - M)]Lﬁ&%
T 2 5 5

sind  sin36 .,
5 +_g‘")]1.3594

2 N
+ — [% (-0.0223) sin 26 + 0.1111 (
T2

[-0.009800 + 0.25 (0.4899 — 0.1372) + 0.004371

3w

- 0.1111 (0.4899 — 0.1372)]

= (0.0436) = - 0.0277
) T

Cp, = % (Ar—Ay) = % (0.0277 — 0.1630) =[0.1063

X -

cp _

1
c 4

1+ (A —A)] = % o+ 0_;;5 (0.1630 — 0.0277)] =[0.386

Ce

47



4.8

Experiment (Ref. 11) Theory % Dafference
=0 -3.9° -4.16° 6.25%
c, 0.76 - 0.782 2.8%
c -0.095 -0.1063 10.6%

My

49 Mip=-pVa [ EY©)AE

M, —2 e
Con = T ], YO E M
SVt Tl
2
c
E= 5 (1 - cosB)

e = % sin d6

(I+cosf) & .
0)=2V.|A, ———+ > A smnd
vE®) { °  sin# ;

With the above, Eq. (1) becomes

G == [T Ac(1-cos8)d0- > |7 Ay(1-cos)sindsinnddd  (2)

n=}

Note the following definite integrals:

Jﬁ cosd sin”0 d0 =0

43



J” sinf sinnB d6=0 forn=2,3,...

J 8 cos0 sind sin 26 d6 =

&N

j” ¢050 snd sin nb dO =0 forn=3,4

o

Hence, Eq. (2) becomes:

T T T
Co =-[MAs—— A+t —A-— A
m, [A‘O 2 0 ‘2---'1 4 2]

[}
(
1
NN

A
(A0+A1 - 72)

3=

4.10  The slope of the lift curve is

_ 065—(-039)

= (0.104 per degree
4 —(-6)

The slope of the moment coefficient curve is

_ 0037 - (-0.045)

=8x10" per degree
4=(-6)

V]

From Eg. (4.71),

0—4
Xae = — e +og5=_8_g‘f%i_ +0.25=[0.242

a

[}
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5.1

CHAPTER 5

i x r=(R df) o

where e is a unit vector
perpendicular to the plane of
the loop, directed into the page.

By symmetry, the resultant velocity due to the entire loop must be along the x-axis. Hence,

—

A%

J e

4x

r 1

47 (AT +R?

ds

v cosb = (_1"_ J i —2—) cos =

T

] (27R) cosb =



r R R TR
2 (A*+RY) JR74a2  2(A%+ RT)

53 a= 2, , where a, = 0.1080 per degree = 6.188 per radian

a
I+ ——(1+
g4+

From Fig. 5.18: § =1=0.054.

a= 61868'188 =491 per rad.
1+ ——(1+0.054)
7(8)

= (.0857 per degree

CiL=a (o - ou=p) = 0.0857 [7—(-1.3) = 0.717)

Co =t @ +a)= O (4 g54)-
T omR 7(8)

b _ (32)°

— =6.02
S 170

54 AR=

At standard sea level, p. = 0.002377 slug/ft’

V=120 mph (-——L ft/ secj =176 ft/sec
Omph _
Qo = % P V2 = % (0.002377) (176)* = 36.8 I/

2, = 0.1033 per degree
=5.92 per rad .

LW 2450
q.S q.S (368)(170)

CL= 03916



a_ - 5.92

o

a= = =438 per rad

1+_ﬂ_(1+f) 1+ 092 (1+012)
TAR 7(6.02)

=0.0764 per deg

CL=2 (o - cu=o)

e Sy g = 03916 o
a

00764

C2 (03916)°

55 - = = (.
P AR 7(.64)(6.02)

01267

Di= g S Cp, = (36.8)(170)(0.01267) =

5.6 To be consistent, we will use Helmbold’s equations for both the straight and swept
Wings.

(a) a,=0.1 per degree = 0.1 (57.3) = 5.73 per radian

a, 573
TAR  7(6)

= 0304

From Helmbold’s equation for a straight wing, Eq. (5.81),

a

(4

-
J1+[a, /(7AR)]* +a, / (AR)

_ 573 _273 4247 per radiad]

J1+(0304)7 +0304 1349

(b) From Helmbold’s equation for a swept wing, Eq. (5.82), where

a, cos A =5.73 cos 45° = 4.05 per radian

and

a, cosA 405
AR 7(6)

=0215

we have

52



a, CosA

ae |
J1+[a, cosA/(wAR)]* +a, cosA/(7AR)

4.05 405

- =2
JI+(0215) +0215 123785

Comparing the results of parts (a) and (b), we readily conclude that the effect of wing sweep
is to reduce the lift slope. Moreover, the reduction is substantial.

J

5.7  Again, we use Helmbold’s equations.
(a) a,=5.73 per radian

a 5.73

Q

= 0.608

-

7AR  7(3)

a= 2o

J1+[a, / (AR)Y +a, /(#AR)

B 573 573

= = [3.222 per radian
J1+(0.608)” +0608 1778

(b) ag cos A=4.05

a,cosA 405 N
= = .43
AR 7(3)

a, cosA

a::
Jl+[a, cosA/(ZAR)J? +a, cosA/(7AR)

4.05 4.05

- = s = 2667
J1+(043)% +043 15185~ 256

In Problem 5.6, with an aspect ratio of 6, we had

a swept _ 3“27 —

= =0.77
a 4247

straight

Lh
LI



The lift slope for the swept wing is only 77% of that for the straight wing when the aspect
ratio of both wings is 6. :

In Problem 5.7, with aspect ratio 3, we have

e 2.667

- . 83

a T3222

straighi
The lift slope for the swept wing 1s 83% of that for the straight wing.

Conclusion: Wing sweep decreases the lift slope. Moreover, wing sweep affects the
Iift slope to a greater depree for higher aspect ratio wings than for lower aspect ratio wings.
This makes some sense, because the lift slope for low aspect ratio wings 1s already
considerably rediced just due to the aspect ratio effect.
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CHAPTER 6

e, re_; (rsmb) e
VX {}: 2 1' —é i _é_
1° sind 17 e a9
¢
— 0 0
I2
1 ‘&1’ - 2
- {e 0 0)—-:ree{ /x —0]+rsin6’ e,{of%/r J} |
r’ sin @ op a0
(0-0+0} =0
r’ sind
Flow is mrotational.
c
62 Vi=—, Vg=0, V,=0
x
> 1 Z J 1 40
VVe S F Zoy+——29
rm a I8 é 56 rsind I
v \7=~1;-§+0+0=0+0+0:
- a

The flow is a physical possible incompressible flow.

6.3
For the sphere: Cp)=1- % sin’0
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For the cylinder: Cep.=1-4 sin’6

At the top of the sphere: 0 = n/2, hence
(Cpsphere = - 5/4 = -1.25

For no manometer deflection, (Cp)sphere = (Cpeyt.
-1.25=1-4sin’0
sin’6 = 0.5625
smb = 0.75

Hence:

The pressure tap on the cylinder must be located at an angular position 48.6° above or below
the stagnation point. :
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CHAPTER 7

71 p=pRT

7. .

RT (1716)(934)

7.2 (a)

R _0HAT16) [0 fTb
y—1 04 slug °R

o=

eo= 22710 Lypgo M IP
y—1 4 shug °R

ft b
slug

e = ¢, T = 4290 (934) =4.007 x 10°

s ft 1b

h=¢,T=6006 (934)=5.610% 10
shug

(b) For a calonically perfect gas, ¢, and ¢, are constants, independent of temperature.
Hence, we have again

ft b
shag °R

cp = 6006

ft Ib

¢y =4290
slug °R

Also, at standard sea level, R = 519°R. Hence

ft b
slug

E =4290 (519) =2.227 x 10°

ft b

h=6006 (519)={3.117 x 10°
slug
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R A4H(287) =1004.5 joule

Py 0.4 kg °K
co= R 28T g5 d0Ule
7“‘1 04 kg °K
By by = ¢, (T - Ty) = (1004.5)(690-288) =14.038 x 10° JCI)'(ule
g

e2—e1=c, (T> - Ty) = (718.5)(690-288) [2.884 x 10° _J‘;“]e
kg

-5y = 0y In-Z—R mEL = (10045) 20 - (287) ¢n 86562582120
T 288 kg °K

3 b,

p. 435 x 10

= =(.6186 kg/m’
RT, (287)(245)

Po =

Yy - 6 104 17144 k
P=Pe {ij 06186 || ={0.5404 —=
435 x 10

S .
-2 X1 s vem

RT  (287)(259)

pv=RT, hencev= RT
- P
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Note: 1atm=1.01 x 10° N/m?*

_ 2
S L hosxi0t
P (02)(101 x 10°) N

. ' Y
For an isentropic process: b o (ﬂ] = [V_ZJ
P2 P2

Le., pivi" =povo or pv’ = constant = ¢,

/¥
_ [Cl}
V— —_—
P

(2] =) @ )

P/ 4
. 1(&) '__1(_1] 1
Tov\a/, v\ w ow
= L 3536 x 100
(14)(02)(1.01 x 10°) N
. 1
77 oy R _AHATIE) _ 0o ft1b
y-—=1 04) shig °R
2 2 . 2
ho=h+ o =¢, T+ v = (6006)(480) + A300)_ 3 798 x 108 110
2 2 2 slug

78 Let (ho)res = total enthalpy of the reservoir = ¢, (To)ses
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2

; Vv
(he)e = total enthalpy at the exit = ¢, Te + 2”

For an adiabatic flow, h, = constant. Hence

(ho)rts = (ho)e

2
Cp(To)res = cp Te + ““25_

Vo= 2 ¢, [(T)... — T.] = 2(10045)(1000— 600) =[896.4 m/sec

p. _ (0.61)(L01 x 10°) ,
o R (0819(287)

-1y {r=0fy 0.2857
T_ (L} i [_P_J 61 [E] - 2476 K
T P. P. 0.61

a

79  Teo= 621 °K

Since the flow 1s isentropic, it 15 also adiabatic. Hence, h, = constant

?.‘ 2
2 2

V= 2(b, —h)+ V2 =2 o, (T, ~ T} V2 = [2(10045)(2621-247.6) + (300)°

=345 m/se
v V?
7.10 ot D —==p+p-—
Pt P > prp 5

—-n) . 10° ‘ - | o
V= \/Vz—(pl-@ﬂLsz :\[2(1'01 x (1)(;1)50'61 0'5)+(300)2 =3422 m/sec

% error = (ﬁ%gz—%}x 100 = [0.81%
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r=-Dr 03 0.2857
711 T=T. [—p—] =262.1 [_j —214°K
D. 0.61

V = 42(1004.5)(262.1- 214) + (300)> =432 m/sec

7.12 +(300)2 = 408 m/sec

- \/2(1-01 x 10°)(0.61-023)
0819

‘ 432 - 4087
% error = (—g—ﬁ——) x 100 = 5.55%

7.13  From Eq. (7.53)

VI
h+ 7 = constant

From Egs. (7.6b) and (7.9),

h=cT= 5L )

y—1
From the equation of state,
RT=p/p (2)

Combining Eqgs. (1) and (2),

b= L (2] 3
y—1\p

Hence, Eq. (7.53) can be written as

. 2
. e [£J + yo- constant G
7=1\p 2

In the limit of y — o, Eq. (4) becomes
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-2

P + —— = constant

e
or,
p+ %2 p V¥ = constant

which is Bernoulli’s equation. Hence, the energy equation for compressible flow can be
reduced to Bernoulli’s equation for the case of y — . Hence, the ratio of specific heats for
incompressible flow is infinite, which of course does not exist in nature. This is just another
example of the special inconsistencies associated with the assumption of incompressible
flow, 1.e., constant density flow, which of course does not exist in nature. This is why we
have stated earlier in this book that incompressible flow is a myth.

As to the question whether Bernoulli’s equation is a staternent of Newton’s second
law or an energy equation, we now see that it is both. For an incompressible flow, the
application of the fundamental principles of Newton’s second law and the conservation of
energy are redundant, both leading to the same equation, namely Bernoulli’s equation.
However, philosophically this author feels stongly that Bernoulli’s equation is
fundamentally a statement of Newton’s second law ~ 1t is a mechanical equation. This is
how we derived Bernoulli’s equation in a very straightforward manner in Chapter 3. For the
study of inviscid incompressible flow, we need only to apply the fundamental principles of
mass conservation and Newton’s second law. The principle of conservation of energy is
redundant and is not needed. '
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CHAPTER 8

a= JiRT =/(1.4)(287)(230) =[04 m/sed

8.1

2
8.2 Cplo=cple+ 7“

2 ~y g 2
Ve s 9- &=359.3°R
2(6006)

T.=T, -
‘ ° ECP

a.= RT, =/(14)(1716)(359.3) =929.1 °R

v
L1385 oo

a, 9291

&

M. =

a= JRT, = J(14)(287)(300) = 3472 mvsec

From Tables: IT°—:1.104 and e =1.412
p

To=1.104 T =1.104 (300) =[31.2 °K]
pe=1412p=1412(1.2) = [1.694 atm

p Po

p*=0.7455p=0455(1.2)=

* * T )
T8 e o833 (1104)=092

T T,
T* =0.92 (300) =276 °K]

a* = /RT =/(14)(287)(276) =333 m/sec
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84  a=_[RT =,(14)(1716)(700) =1297 fi/sec

T
From Tebles: ~*=2.058 and Po 195
p

To=2.058 T = 2.058 (700) =
Pe=125p=125(1.6)=

* * T
S 2= (08333) Q058)=1.715

T T,

T*=1.715 T=1.715 (700) =

p P

p* = 6.6 p=6.6 (1.6) =[10.56 atu]

a* = [JRT* =./(1.4)(1716)(1200) = 1698 f/sec

.V 2983
M* =L =272 =757
a* 1698

8.5  From Tables: 2= =7.824 and T? =18
p

Hence, for ﬂlé test section flow,
Po=7.824 p=7.824(1)=7.824 atm

T,=18 T=1.8(230)=414°K
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Since the flow is isentropic, both p, and T, are constant throughout the flow. Also, in the
- reservolr, M =~ (. Hence, the reservoir pressure and temperature are

Po=7.824 atm

T,=414°K

8.6 From the Standard Altitude Tables, at 10,000 ft.,

Por = 1455.6 Ib/ft* and T.. = 483.04 °R

T
From Table A.1: For M, = 0.82; Po 1.555, T° =1.134
pd) o

T
ForM=1: 2% =1893, -~ =12
o] T

Since the flow is isentropic, p, = constant and T, = constant.

p= P Po % (1.555) (1455.6) = 1196 Ib/f)
070

P, P
T T 1 . o
I = T_To T, == (1.134)(483.04) =

| T
87  FromTable A2: 2 =770 P2 23449, “Z =238

P £ Ly

Poy =0.181, M, =0.5039] Por 04601

1 o

Hence,

p= 22 p =772 (1)=

1

T~ 2T =2238 (269)=

(o)
LN



Py _ (D01 x 10%)
PR (287)(288)

=1.222 kg/m’

pr= 22 5, =3.449 (1222) =

Pi

P, = p, =9.181 (1) =

1

T
T, =T, = T T, = (2.352)(288) = [677.4 Kl (using Table A.1)

1

Po: - (287) £n 04601 = 222.8 12°

P, kg °K

$=51=~R fn

) o T D,
88  £2 =1033. From Table A2, M = 3.0, —Ti_=2.679, Pee 1206
~ ! Py

Thus,

T
Ti= T, = (1390) =BI85W

2.679

From Table A.1, for M; = 3.0,

TO
1 = 2.8
T

1

T,
To, =T, = T Ty =28 (518.9) = [1453°

I

Po, = 2 py = (12.06) (1) =
I

89 &f_ :Ae'(szhsj)'lR = 6_099'5)/287 =(0.499
b,

From Table A.2: M;=2.5
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8.10  From Table A.2:

— |M)—s

=2.799 and M, = 0.4695

1

Hence,

T,
T, = ~T; Ty =2.799 (480) = 1343.5°R

!

2y = JAAN1716)(13433) = 1796.6 fi/sec

V2 =M, a; = (0.4695)(1796.6) = 1843.5 ft/seq

T

From Table A.1, for M, = 0.4695, T =1.044
T,* T, 0
Ty* = T T, = (0.8333)(1.044)(1343.5) = 1169°R

4

Ag* = IRT, = J14H(1716)(1169) = 1676 ft/sec

-*.‘ V7 843-5
My, === = -0.503
o 1676

z

"8.11 s the flow subsonic or supersonic? For sonic flow, Po :——1—= 1.893, which is

p 0528
higher than 1.555. Hence, the flow is subsonic. From Table A.1, for

Po — 1555 M=0.82.
p

a= JRT = J(1LA)287)(288) =340.2 m/sec

V =Ma=(0.82)(340.2) = 278.9 m/sec

7712.8

8.12  The ratio c = 3.645 is larger than 1.893. Hence, the flow is supersonic. This

means that a normal shock wave exists in front of the nose of the Pitot tube. From Table A.2,
for
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o 2. |
Poi _ 728 _ 5 645 M, =1.56
p, 2116

;= IRT, =J(1L4(1716)(519) =1116.6 ft/sec

Vi=M; a; = (1.56)(1116.6) =

5
813 (a) p= Lot X100 o o
RT  (287)(288)

2(p, — 1555~ ' ' '
v | mP) \/2(1'555 1'?)2(;‘01 X100 303 misec  INCORRECT
p . L

% error = M =18.69%)
2789
) p= L =216 600376 g’

RT  (1716)(519)

V= \/Z(PVI’) =\f2(7712'8_2”6) =2170.5 fi/sec INCORRECT
o

0.002376

% exror = 21001742 _ ool

1742

2% 2 1.2 -y +2 2
P: y+1 ¥ +1 y+1
poz :(1+Y"IM§] -1 (2)
P, 2
M2 = 1+[(y =1 /2]M]

¥y Mi-(y-D/2)

Working with the expression inside the parenthesis of Eq. (2):
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(B (55 a
| — =1+ -1) (o
2 Y4 Ml"’(y_l)/z 27’ Ml“(?’-l)

2+(7—1) M] }z 4y M} =2(y =D +2(r - D+ (-1’ M:

=1 -1
o )Ly M2, -) 4y ME-2 (7

Ay Mi+(7 -2y ) M) (R 42p ) MY
4y M} -2 (-1 4y M} -2 (r -1

gV @
4y Mi-2 (-1

Combining Egs. (4), (2), and (1), we have:

7
o, Do D*M? Py a2y M2 .
Po, ZP_zP_zz[ ~ O’j_) L }" [ /A ‘}whmhisEq.(&SO)
Py P2 Pi |4y My-2 (y-D) y+1

8.15 At 80,000 ft., T..=389.99°R

Ve=2112 (-2—(8)) = 3097.6 ft/sec

2= JIRT = ,/(1.4)(1716)(389.99) = 967.9 ft/sec

- 3097.6 _ 39
967.9
From Appendix A: -
T

For M.=32, —% =3.048

!

To=3.048 T,=3.048 (389.99)=1188.7 R
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Since 0°F = 460°R, the

T, = 728 7°F
§16 Lo L3 5
Pq 0.

From Appendix B, Mo, = @

8.17 The temperature at the stagnation point is the total temperature in the freestream,
because the total temperature is constant across the normal shock. From Eq. (8.40),

IR VERS I i
T, 2 2

o

(36)” = 2602

Since T =300 K, we have

T, = (260.2)(300) =

This 1s an ungodly high temperature. It is also incorrect, because long before the air would
reach this temperature, it would chemically dissociate and iomize. In such a chemically
reacting gas, the specific heats are not constant, which means that Eq. (8.40) is not valid for
such a chemically reacting flow. In reality, the temperature at the stagnation point on the
Apollo was close to 11,000 K, much lower than our estimate above, but still plenty high. Air
at 11,000 K 1s a partially ionized plasma. For the analysis of high temperature, chemically
reacting flows, techniques much different than those discussed in this book must be used.
See for example Anderson, Modem Compressible Flow, 2™ ed., McGraw-Hill, 1990, or
Anderson, Hypersonic and High Temperature Gas Dynamics, McGraw-Hill, 1989, reprinted
by the American Institute of Aeronautics and Astronautics, 2000.

8.18 Use Eq. (8.40)

T -
_‘3—=1+y—1M
T 2

@

2
&

For T, = 11,000 K, T = 300 K, and M., = 36, this equation becomes:

11,000

y=1 2
1+77" (36
300 > 69

35.67 =648 y - 648
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or,

648
In order to use Eq. (8.40) to estimate a reasonably valid stagnation temperature for the
Apollo, we have to use an “effective gamma” of 1.055. To double check this, return to Eg.
(8.40), msert y = 1.055, and calculate T,

. 1.055-1

T -
S Sl VR (36)° = 36.64
T 2

0

or,

To=36.64 T..=36.64(300)= [11,000
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CHAPTER 9

9.1 B = Sin™ [i) =41.8°
15
h h =559 Tan B = 559 Tan 41.8°
7l 7 7/ 7 :
556 £
92 M, =M sinB=(4.0)sin30°=2
a— pl —_ ']—‘2 _ p°1 — —
From Table A.2, for M,, =2 =% =45 -2 =1.687, = =0.7209, M,, =0.5774
1Y ! Po,

pr= 22 p; = (4.5) (2.65 x 10%) = [1.193 x 10° N/m]

Py

T, = T = (L6ET)2233) =
1

From the 6-B-M diagfam: 0=17.7°

M _
o Me, 05774

sn(f-0) sm(30_177)

T
Poo _ 518, 2o =40

From Table A 1, for M; = 4:
Pi T

p,, = 2 Pou b = (0.7200)(151.8)(2.65 x 10%) =29 x 10° N/

po‘ p}

T
T, = T, = == Ti=(42)@233)=

T,
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s—si=-R fn 2% =_(287) 1007209 =939 IOUC
| P, kem®K

9.3 Consider an oblique shock. For such a case,

N
pol pZ p}

M—'ﬁ/“vk——'ﬁ\

Depends on actual Mach Depends on pormal
number behind the shock Mach number upstream
Ma, not M, of the shock, M, .

In the derivation of Eq. (8.80), we related M; directly to M, through Eq. (8.78). This holds
only for a pormal shock. If we wish to use Eq. (8.78) for an oblique shock; then both M,
and M; in Eq. (8.78) are replaced by M, and M, . However, in Eq. (1) above, Po, /P,

Depends on Mz, not M, . Because Eq. (8.78) does not relate M, to M; for an oblique shock
(itrelates M, to M, ), then Eq. (8.78) cannot be used for the derivation of p,, /p; for an

oblique shock. Therefore, the derivation of Eq. (8.80) holds only for a normal shock. It can
not be used for an obligue shock, even with M; replaced by M, . On the other hand,

T
S2—S1=¢Cp £n P2 “R fn 2
P T

where pa/p; and T/T; for an oblique shock depend only on M, . Since Po, _ e, then
' Po,

Po,

clearly depends only on M, . For these reasons, when using Table A.2 to determine

oy

Oy

P.,

1s a valid column,

changes across an oblique shock, using M, , the total pressure ratio

03

but the column giving is not valid.

Py

94 To CORRECTLY calculate p, :

M, =M;smnp=3sn3687°=1.8

n



From Table A2, for M, =1.8:  —2 =0.8127

p,,
From Table A.1, for M; = 3: Por —36.73
P,
p. Do Po o o (0.8127)36.73)(1) =985 at
) po, p]

(b) The INCORRECT calculation of p, would be as follows:

From Table A2, for M; =1.8: Po: — 467
Py
p,, 2% p; =467 (1 atm)=4.67 atm. Totally WRONG
1 .

% error = -2985—;7461 % 100=539% —a terribly large error.

9.5
M, = 2.8
—_——

From the 8-B-M diagram:

Al

M, =M sinp=2.55in46°=138

From Table A2, for M, =18, 22 =3613,
P

|

=1.532, M, =0.6165

2 = P2, =3.613 (1 atm) =f.613 am
Dy



) |
Ty= & Ty = (1.532)(300) =
1

M
m 0.6165 =@
Sin(f—-6) Sin(46—-2225)

9.6 From the 6-B-M diagram, shock detachment occurs when o> 28.7°. When a=06=
28.7°, B = 64.5°.

M, =Misin =24 sin 64.5°=2.17

From Table A2, for M, =2.17: P2 =5377
P

Prax = 22 py = 5327 (1 atm) =

P,

and the maximum pressure occurs when o =

9.7

From the 6-3-M diagram:  =48°

M, =M;sinB=3.5 sin48°=2.60

n

Po —0.4601, M,, =0.5039,
Po.

From Table A.2:



M ”
M= ——n e 09039 g
Sin(f—€) Sin(48-302)

Pos = 0.876
P.,

From Table A.2, for M, = 1.648;

From Table A1, for M =3.5: 2= =7627
' P.

Po, Po, P=

D,, = Poy Doy Pou = (0.876)(0.4601)(76.27)(0.5) =

Po, _
Py

9.8 From Table A.1, for M; =4, 151.8

Hence, Po, = Do, p1=151.8 (1 atm) = 151.8 atm.
p

1

p°2

a) M;=4 From Table A.2, for M, =4: =(.1388
——— o ’ Po,
Po, P,
p, = 2 p =0.1388(151.8)=21.07 atm

0

Loss in total pressure = p, - p, =151.8 —21.07=

b)
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From the 8-B-M diagram,
f=38.7°

M, =M;sinp =4sin38.7°=2.5

From Table A2, for M, =2.5: 2% =0499, M, =0.513
P,
M, 0513

My= — = — =221
sin(f—60) sin(38.7-—253)

b

From Table A2, forM, =221: —= =0.6236
P.,
Po, Po, Po, _ _ . .
P,, = —— —= —+p1 = (0.6236)(0.499)(151.8)(1 atm) = 47.24 atm
po, pn, p] .

Loss in total pressure = p, - p, =151.8 -47.24 = [104.6 atm

c)

Po,

From part (b) above, My =2.21, =(.499.

P,

From the 3-0-M diagram: B, =47.3°
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For the second shock: M, =M, sin B, =2.21 sin 47.3° = 1.624

From Table A2, for M, =1.624: 2% = 08877, M, =0.6625
R P, |
M, 0.6625

Sin(B, —0,) sn@73—20)

From Table A .2, for M3 = 1.444: Po, 0.947

P,

_ Po, Po; Po, Poy
pn; p03 po, pl

Po, p1 = (0.947)(0.8877)(0.499)(151.8)

p,, =63.68 atm

Loss in total pressure = p, - p,, =151.8 -63.68 =

CONCILUSION: To decrease a supersonic flow to subsonic speeds via a shock system, a
series of oblique shocks followed by a normal shock yields a smaller total pressure loss than
a normal shock by itself. Hence, a system of oblique shocks, followed by a nommal shock is a
more efficient means of slowing a supersonic flow to subsonic speeds than a smgle normal
shock itself.

9.9
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From the 8-B-M diagram, B,=34.2°
M, =M;smp,

n

=(32)sin34.2°=18

From Table A2; for M, =1.8: £2 =3613, Loy,
b T,
M, =0.6165
M, 06165

M2 = — = = = 4.
sim(f, —6,) sin(342-82)

For the Reflected Shock:

From the 0-3-M diagram, for M =224 and §=18.2° B, =44°

an =M, sin B, =2.24 sin 44° =1 56

From Table A2, for M, =1.56: £2 =273, L1361, M, =0.6809
P T )
M, 0.6809

= - =— = 1.56/ Note: The fact that M3 and M, are
sin(f, —¢) sin(44-182) :

equal is just a coincidence.

D=p,-6=44-182=P587

ps= P2 B2 o = (2.673)(3.613)(1 atm) =9.66 atm|
P, P '
Ts = > Ty = (1.361)(1.532)(520) = 1084°R]
2 1
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9.10

From Table A.3: ForM, =2, v, =26.38°

vy =0 + vy =23.38° +26.38° = 49.76°

Hence,
M, = 3.0
' po To
From Table A1, for M, =2: —=7.824, —~==1.8
Py T
Po 1,
ForM;=3: — =36.73, —+=238
P2 T

However: p, =p, and T, =T, . Thus

p= L Eﬁ'*m:( : ](7.824)<o.7>=

Py, P 36.73

T T ( 1] ' o
Ty= —2. 2 T;=|—|(1.8)(630)=H405°R
2 T Tl 1 78 ( )( 3 ) m

p, _ (0149)2116)

‘ = 4537 x 107 slug/ft’
RT, (1716)(405)

=

P, = Do, = P, p1=(7.824)0.7) = 5.477 a‘@
P
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T,

T = (1.8)(630) =

=]

w~
=
+1

From Table A3: for M; =2, uy =30°
For My =3, pp = 19.47
Referenced to the upstrearn direction:
Angle of forward Mach line = p,; =

Angle of rearward Mach line = py -8 = 19.47 - 23.38° =

Note: The rearward Mach line is below the upstream direction for this problem.

P,

911 From Table A1, for M; =1.58: — =4.127
P
Poy _ Poy _ Po Dy =(4.127) (_._}_,_J =316
P, P, Py P 01306
From Table A1, for Do o 31.6,M, =29
P2

From Table A.3, for My = 1.58; vi = 14.27, for My = 2.9: v,= 47.79

O=vy-v,=4779 - 1427 =

9.12

-l
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From the 0-B-M diagram:
For M =3 and 8 =30.6°, B = 53.1°

M, =M;sin B=3sin53.1=24

From Table A2, for M, =2.4: B2 6553, 2 =2.04, ¥ = 0541, M, =0531
b, T P,
M 2
- 22 -7

So(f—0)  Sm(s3I-308)

From Table A.3: For My =1.37, v; = 8.128
vs=8.128 + 30.6 = 38.73°
From Table A.3: For v; =38.73°, M5 = ‘

| T
From Table A.1: For M; =3, £ =36.73, =238
1

P:

For M3 =248, : L 16.56, %‘: 223

P 3
p{g po; po po 1 ] 5] =
p3= - % 2a Ton ol | (1)(0.5401)(36.73)(1 atm) =
Po, Po, Po Dy 1656
Ty= b o w Ju o [i] (DD)2-8)(285) =
T, T, T, T 223

Clearly, ps # p1, T3 = Ty, and M3 # M. Why? Because there is an entropy increase across the
shock wave, which permanently alters the thermodynamic state of the original flow, even

after it is brought back to its original direction.
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9.13

(a) ForM;=2.6 and 6 =5°,  =26.5°

M, =M;sinB=2.6sm265°=1.16

From Table A.2: 22 =1.403
P

Por _ 1995
P

From Table A.1, for M; =2.6:

From Table A.3, for My =2.6: v, =41 41°

vo=vi+8=4141+5°=46.41° > M, =283

P,
P2

From Table A.1, for M, =2.83: =284

Pi  Po, Po, P

L' _ (ps —p;)e cos a”: (ps—p:)
CRS q, ¢ (1) G

c, = COS o

_rpeYs _reVe _reM;

2y p 2 a 2
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2(ps — 2
c, = —-—-—-——-(p3 pz_,) Cos QL = [-&—&) cos o
P B

2 (1.403-0.7022) cos 5° = 0148

c, = ————
(14)2.6)"

- X i 50 .
com 2o (B2 e o, S g gy T

y M: \p, p, cosa cos5®

(b)  ForM,=2.6and0=15° B=359°

M, =M;sin B =2.6sin35.9°=1.525

From Table A.2: LER. 2.529

P

From Table A 1, for M, = 2.6: Do _ 19.95
P

From Table A3, for M; =2.6: v;=41.41°
va=vi+0=414]1 +15=5641° > M,=337

Po, _
P2

From Table A1, for My = 3.37: 63.33

P> _ Py Po, Do, [1) o
Pr . Py Po, Po, _ 1)(19.95)=0315
YT ax )

T aHEs)

6= c, SN _ o 450 sinl5 =‘,,

- cosa cosls®

(€)  For M;=2.6and6=30°p =593°

M, =M sin=2.6 sin59.3° =2.24

84

2 [&—&] cos o= ———~ (2.529 — 0.315) cos 15° =[0.452]



P2~ 5687, 2o
b b;

=19.95, vy =41.41°

vo=v1+0=4141+30=7141° > M;=4.46

Po _97525
P2

Py Py Poy Py _ (#] (1)(19.95) = 0.0725
27525

_ 2 (p, sz _ 2
¢, = ——— [ T2 —Z=| cosot = ———— (5.687 - 0.0725)= .1@
CoyM? (p, P (1,4>(2.6)2( )

Cd=1.19 sin 30 -

cos30°

9.14
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Forregion 2:
vy =49.76°

V2=V +8=49.76°+5°=54.76° > M, =327

For M, =3- 22 = 36.73:
P:
— P°1 —
For M, =327, = 5476
P

Forregion 3:
vi=vy+0=75476°+20°=74.76° > M3 =4.78

p°3 —

For M; = 4.78: =407.83
Ps

Forregion 4:
M;=3and 8=25° > =44°

M, =M; sin p =3 sin 44 =2.08

Ps 4881, M, =0.5643,and 2% = 06835
P P, i

M,  _ 05643
sin(f— ) sin(44-25)

733.

Thus,

z

Po,
P4

vs = 18.69, =5.165

Forregion 5:

Vs =vg4+ 0 =18.69°+20°=38.69°—> Ms =248
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Pe 1656

Ps

Pressure ratios

Pr_ Py Po Po (1 - 0.670
[54‘76} (1)(36.73) = 0.6707

Py _PaPs P2 Py Poy Poy (0.6707)( )(1)(54.76) =0.09

Pv PiP: Pi1Po. Po, P2 40783
Ps 4881
P

_p_5= pS p°5 po; pf't
pl pef, po_, pol p]

1 ) 772 =
- ( 1656) (1)(0.6835)(36.73) = 1.516

Let ¢ = length of each face of the ndiamond wedge.
L =p4 £ cos 25°+ps £ cos 5°-p; £ cos 5° - p3 cos 25°

L =(ps—ps) € cos 25°+(ps—p2) £ cos 5°
} Rl - -f | . . i
an %le?C 7M] C pl p.[ pl p!

c, = —2—2- 1 [(4.881 — 0.09) cos 25° + (1.516 — 0.6707) cos 5°]
(14)(3)" ¢

7
6=0.823 —.
c
However,
C2_es100 Le o li—os077
4 ¢ 2 cos 10°

G = (0.823)(0.5077) =
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D'=p4 £ sm25°+ps £ sm5°-py £ 510 5°-p3 £ sin 25°

D= (ps—p3) £ sin25° +(ps —p2) £ sin 5°

=2 =2 __Z.f H&_&]sinQS%{&—p—ljsinS‘}
9,5 "}Z:'PIMfc yMpc[\pp B P B

ca= —2; £ [(4.881 — 0.09) sin 25° + (1.516 — 0.6707) sin 5°]
(14)3)" ¢
ca=0333 £ = 0333 (0.5077) =
c

9.15  The maximum expansion would correspond to M, — co. From Eq. (9.42) in the text,

mvs = fmd 2 e (27l 2 —tan P T
y -1 y +11
M2->00 M2—>oo

_ fﬂl EZ (L T 2077 rad = 130450
\y—l 2 2 7y -1 2

Since, for My =1, vy =0, then

6= V2 -V = 13045—-0= 130.45°9

max

M=/

4
77 D/3o,45°
’/Mz“—) o0
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9.16  For the cylinder, with ¢3 based on frontal area,
, 4
DNey1 = Qoo S €4 = quo d(1)/(4/3) = 5 (d) g

For the dimensional wedge airfoil, referring to Figure 9.27.

Dw=(p2—ps)t

Hence,

4
(Do g(d) .
D), (P—p)t

However,t=d and q.. = 22,— M M
Thus,

4(7’ 2 2
' - =M — 2
(D )c),1 _ 3 2) ! .3 4 MI

@) (P_z_&) [&_&)
S P P

To calculate pa/p), we have, for My =5 and 6 =5°, B =15.1°.

M,; =M, sin B =5 sin (15.1°) = 1.303

From Appendix B, for M, = 1.302, £2 = 1.805. Also,
P,

M,, 0.786

sin( B - 6) - sin(151-5) s

M2=

To calculate & , the flow is expanded ﬁnough an angle of 10°. From Table C, for My =
Py
448, vo = 71.83 (nearest entry).
vi=v, +0=71.83 +10=81.38°

Hence, M3 = 56 (nearest entry)
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From Appendix A: For My =5, Pou— 5291
Ps
= p°3 —
ForMs;=35.6, =1037
P

p
From Appendix B: For M, =1.303, —= =0.979%4
P,

Thus,

Ps _ Ps Po, Po, P, 2( 1

(1)(0.9794)(529.1) = 0.5
Pi Po, Po, Po, Py 1037)

Hence,

Oy, M AN

—_ 3 = = Ok
(D)., [ P &J (1805 05)
Pr P

Note: This is why we try to avoid blunt leading edges on supersonic vehicles. (However, at
hypersonic speeds, blunt leading edges are necessary to reduce the aerodynarnic heating.)

9.17 The supersonic flow over a flat plate at a given angle of attack in a freestream with a
given Mach number, M., is sketched below.




The flow direction downstream of the leading edge is given by line ab. The flow direction is
below the horizontal (below the direction of M.,) because lift is produced on the flat plate,
and due to overall momentum considerations, the downstream flow must be inclined shightly
downward. Also, line ab 1s a slip line; the entropy in region 4 is different than in region 5
because the flows over the top and bottom of the plate have gone through shock waves of
different strengths. The boundary condition that must hold across the slip line 1s constant

pressure, 1.e., ps = ps. It is this boundary condition that fixes the strengths of the expansion
wave and the shock wave at the trailing edge.

To calculate the trailing edge shock and expansion waves, and the flow direction
downstream, use the following iterative approach:

1. Assume a vahe for ¢.

2. Calculate the strength of the trailing edge shock for the local deflection angle (-
$).- This gives, among other quantities, a value of p4.

3. Calculate the strength of the trailing edge expansion wave for a local expansion
angle of (a-9). This gives a value for ps.

4. Compare ps and ps from steps 3 and 4. If they are different, assume a new value
of ¢. ‘

5. Repeat steps 2-4 until p; = ps. When this condrtion is satisfied, the iteration has
converged., and the trailing edge flow is now determined.
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CHAPTER 10

10.1  From Table A.1, for AJA* = 2.193,

. T
Po. =19, , 2 =2.058.
P. T

For isentropic flow, T, = constant and p, = constant. Hence,

P, =Po = Satm,and T, =T,=

P“_zs Po™ (125) (5 atm) = .4 st

0.

T,

Te= = [ J 520) = R252.7°R
T To= 2058( ) -

Op

_ D. (04)(2116)
Pem RT. T ame)2527) = 000195 shug]

a.= ORI, = JAA)AT16)(252.7) = 7792 fi/sec

U =M, 2. = (2.3)(779.2) =

102 e 1

5 03143 =3.182. From Table A.1, we see that M, = 1.4, and A/A* =[1.113.
Pe -

103  Ahead of the normal shock in front of the Pitot tube,

\/_CJJ - pol=p¢,=2.02x105N/1'n2
i . Po, _ 892 x 1¢°

p,, 202x 10°

=0.4416
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From Table A.2: M.=2.65

From Table A.1: AJA* =3.036

P, _ )LL) _ 511665008
RT  (1716)(520) >

Q

ES
p* =L 5o =(0.634)(0.01186) = 0.007519 slug/ft’

o

*
T*= —11; T, = (0.833)(520) = 433 2°R

[+

ut=ar = J14)1716)(4332) = 1020 fi/sec

m = pru*A* = (0.007519)(1020) (i) o213 g
: 144 sec

10.5 m = p*u*A*

‘ *
u*Z\/}KT‘*andp*= P

RT*
Hence,
- p* _ p*A*
m= A* f T* =
RT* A RT* ﬁ
Since, M* =1, then
L) SRy 22
T* 2 2
p (y+l r/~N i
-3

Thus,



. _ \/7 . (7+1j-l(7+1)/2(7—1) D,
m — A¥ | ——
R 2 JT

or,

. * (/-1
)
\/;ITQ Rly+1

106  po=>5 atm = 5(2116) = 10580 Ib/ft’

A* = 4/144 = 0.02778 £

- _ (105809)(0.02778) | (14) ((2)° _ shig
" V520 \/(1716)\2.4) 0213

sec

which is the same as obtained in
Problem 10.4

10.7

/q%;-;o \
—> My —t—
, Me
/q_v\:
Ae
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First, check to see if the flow is sonic at the throat.

A
P 0.947

<

From Table A, for 22 =1.056: M, = 0.28 and AJ/A* =2.166
P,

. A A . .
Since A° =1.616< A:‘ =2.166, then A; > A*. The throat size 1s larger than that for sonic
t

flow, hence the throat Mach number, M, is subsonic.

A A Al L o166)=134
A* A, A* 1616

r A — 1 24- - P, _
From Table A.1, for X‘; =1.34; —£ =1.186

t

po=2u Pep = (1“1182) (1.056)(0.947) =

P, P.

10.8 Note: The equation for m given in Problem 10.5 can not be used here because the
flow 1s not choked, i.e., the throat Mach number is not $onic.

1;1=p.;A,,uc

From Table A.1, fo Po _—7056: M.= 0.28, -% =1.016
Pe . o . : .

<

Te=Ty/1.016 =288/1.016 =283.5°K

p. _ (0947)(1.01 x 10%)

=1.176 kg/m®
RT, (287)(2835)

Pe=

ae= IRT, = J(1.4)(287)(2835) =337.5 m/sec

1 =M, 2. = (0.28)(337.5) = 94.5 m/sec
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Ae= A, (%] =(0.3)(1.616) = 0.4848 m*

t

m = peAgue = (1.176)(0.4848)(94.5) =

109 (@) Be = 1 =1 064
p. 094
From Table A.1: M, =03 and AJA* =2.035. 2L A A [—-1—] (2.035)=1.33.
A¥ A, A* 153

Since A¢> A*, then the flow is completely subsonic. No shock wave exists. Hence, from

Table A1, for 2= =1.064, M. =03,

P.
(b) P _ ___1__ =1.129
p. 088
From Table A.1, for £ = 1.129: M, = 0.42 and :'; ~1.539.
P, ,
A A A (—1—-) (1.529) = 0.999 = 1.0.
A* A, A¥ \153/°

Hence, A;= A*, and the flow is precisely sonic at the throat. It is subsonic everywhere else.

Hence, from the above M, = 0.42|

(¢) From the above results, clearly when pe is reduced below 0.866 atm, sonic flow
will occur at the throat, and the nozzle will be choked. Since p. = 0.75 atm is far above the
supersonic exit pressure, we suspect that a normal shock wave exists within the nozzle. Note
that, if we run the same calculation as in parts (2) and (b) above, we find:

P, _ (_1__) =1.333.
P. 0.75

From Table A.1, for Po - 1.333, we have
Pe

B 1.127

A*
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—L=—"1 £ = (IISE) (1.127)=0.7366. Since it is impossible for A; < A*, then

clearly the flow can not be completely isentropic. There must be a shock wave inside the
nozzle, with a consequent change in both p, and A* across the shock. Hence, the above-
calculation 1s meaningless. Instead, set up the following trial-and-error process as follows:

Assume a normal shock exists inside the nozzle, say at a location where Ay/A,=
1.024. Let:

Ay* = sonic throat area for the flow ahead of the shock.
Ay* = sonic throat area for the flow behind the shock.

p,, = total pressure for the flow ahead of shock.

p,, = total pressure for the flow behind shock.

Shock
‘_”_‘-——"""—_—
{ |
f
[
Y =17% bom
900; 2 M/ Mz | J:‘e
|
: 1
A
A, -
‘n.-—-———-—‘_'—"——yf—-——“—‘*—"_"—*-/w——__n-
Flow with %= B* Flow with A%=A"

Note that p,. <p,  A*>As* -

which comes from the shock wave theory discussed in the text.

Key equation:
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= Pe_ Poy
Po, Po,

Pe

To find the values of the ratios in Eq. (1):
From Table A.1 for Ay/A* =1.204: M, =1.54

From Table A.2 for My = 1.54: My = 0.6874, 22 =0.9166

Po,

From Table A.1, for M, = 0.6874: : =1.1018

A
. :ﬁﬁ_ﬁ_:(lgg)( L )(1 1018)=1.4
A, ¥ A A, A*
A P,
From Table A.1, for —— =1.4: M= 0.47, —% =1.163
N A2* pc
Returning to Eq. (1):
pe= Lo Por =( : J(09166)(1 atr) = 0.788 atm.
Po, Po, 1163

)

This is slightly higher than the given p. = 0.75. Hence, move the shock wave slightly

downstrearmn.
Assume Ax/A.=1.301

From Table A.1: M;=1.66

From Table A.1. for My = 1.66: 22 = 0.872, M, = 0.6512
Po,

Ay ,
From Table A.1, for M, = 0.6512: X 2* =1.1356

2

: =_A_LA—2*=(1 53)[ 0 j(l 1356) =1.335

La
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_ P.,
'

From Table A.1, for Be _ 1.335: M.=0.50,
A2 pe

=1.1862

From Eq. (1):

Pe= Pe Po, Do, = (—ln—] (0.872)(1 atm) = 0.735 atm.

Do, Do, 11862
A 0.75-0.
Interpolate: - —2 =1.301 — (1.301 — 1.204) OB=0735 ) o7
A, 0.788—0.735
Thus, Assume Ay/A;=1.274
From Table A.1: M;=1.63
From Table A.2: M, =0.6596, 2% =0.8838
Po, .
A, :
From Table A.1: —=— =1.1265

*
2

A _ A A A |53 (-——1—] (1.1265)=1.353
1274

Do,
P.

From Table A.1: M.=0.49, =1.178

L4l

o 1 v ;
Pe= Pe Po, P, = (—) (0.8838)(1 atm) = 0.75 atm
pc)2 pol 1178/

Hence, p. calculated agrees with pe given. Thus,

, tm
(@) P, latm 6.49. -
p. 0154 atm
A,c

From Table A.1: = 1.53, which is precisely the given area ratio of the nozzlé. Hence,

for this case, we have a completely isentropic expansion, where,
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@33—1.88

10.10 From the 6--M diagram, for 6 = 20° and = 41.8°, we have M; = 2.6. From Table
Al, .

10.11  From Table A.1, for Ae 6.79, M. =3.5

A*

From Table A.2, for M. =3.5: 22 =0.2129

P,

Po 1 ‘
Po, = =y, = | ](1-448)=

P, 02129

T
10.12 From Table A 1, for M. =2.8: Lo=2714, 2-=2.568

P. e

At standard sea level: p=2116 Ib/ft*, T = 519°R

Po= 22 p. = (27.14)(2116) = 57,430 Ib/f* = 27.14 atm

c

T .
To= = Te= (2568)(519) =

po= oo B0 _ o5y g

RT, (1716)(1333)

i}

p* =(0.6339)(0.0251) = 0.0159 slug/fr-

T*=0.833 (1333)=1110°R

a*= [JRT* = J(14)(1716)(1110) =-1633 fifsec = u*
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m = p*u*Al*

m 1 _
pru*  (0.0159)(1633)

A¥= 0.0385 ft

From Table A 1: AJA*=3.5

A

Ac= 2 A= (3.5)(0.0385) = [0.1348 f

A
From Eq. (10.38) intext: —% =2 _ = =%
A, A* p,

From Table A 2: for M, = 2.8: Doy _ 0.3895
Po,
P P ‘ :
A, =A |2 =ApF |2 = (0.0385)[ ! ) = [0.0988 ft
: "\ P, p,, 03895,
10.13 m = pru*A* (1)
Also, R=R/M = 3222 _ 519 6300
kg K
. 1
* =1 02
p* = P poz(__Q_]r _Po__:(_z*jo' P =3319% 107 p,
2, y+1) RT, \22/) (519.6)(3600)
*
TH =17 = («—2——) (3600)=3273 K
T, y+1

ut =a* = RT* = J(12)(5196)(3273) = 1428.6 m/sec

B ) . k
Hence, from Eq. (1), with m =287.2 —-g—,
. sec

287.2=(3.319 x 107 py)(1428.6)(0.2)

or,
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2872 =3.029x 10°

P 3319510 7)(1428.6)(02) m’

or,

6
Do = 3029 x 10 =

101 x 10°

10.14 We assume the flow velocity is low at the diffuser exit; hence the total pressure at the

Po. - 0.3283.
P,

exitis 1 atm. From Appendix B, forM =3,

Ps _ 15 P 21203283 =0.304
pu po,

po= 28— ~p 5T am]

0394 0394
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CHAPTER 11

111 u= %’5 =Vot 27 (0 comty o (27x)

J1-M2

v= 10 _ (Zﬂ\/l—‘Mi ) e FNIMY iy (27x)

&  J1-M2

=-140 1t 2" MY gin (2mx)

2e= \JRT = J(14)A716)(519) = 1116.6 fsec

M., = Yo o 700 _ 0.6269
a, 11166

Thus, at (x,5) = (0.2, 0.2)

u=700 + Z(;—T% e 2 OTINOD o5 [0 2)} = 765.6 fifsec

v =-140 1t 2% gin [27(.2)] = -157.2 fv/sec

V= o’ +v =[(7656) - (1572)? =781.6 fifsec

L 1079
T

-3

From Table A.1, for M, = 0.6269,

To=1.079 T = 0.079 (519) = 560°R

2= J/RT, = JAAY1716)(560) = 1160 fi/sec

2z
a?=a’ + 7’—;1 (V3 =1.345 x 10° = (.2)(781.6)*=1.223 x 10° [—%

se
a=1106 ft/sec .
M= %g =0.7067
a
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From Table A.1, for M=0.6269: 2= = 1.3065, %_ =1.079

peo ay
P T

ForM=0.7067= == =1400, = =1.101
P T

p=2 Bo o - [’11?) (1.3065)(1 atm) = [0.933 atn

Py Ps

. L

T= Tl o, (1—1‘0—1] (1.079)(519) = 508.6°K

11.2 The results of Fig. 4.5 are for low-speed, incompressible flow. Hence, from Fig. 4.5,
at a=15%ata=>5°,

¢, =075

¢, 075
JI-M2L f1- (067

C, = =10.938

C - .
113 ¢,=_ S 054 054 _ 5663

SO Jim(38) 08146

C —054
®) C= > = 3 Z054
W{ e J G omes:| [
"+ 1-M2 ) 2 LR '

C, =[0.7063
C ]
© Cp = ' SR -
JI—M2 +[M§(1+”TM§J 21-M? ]Cp“
- -054 ' ‘

C =
® 08146 +[03364(1.067) /1.6292}(~054) -

h
3
(i
Hi
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¢, = 7763

Note the differences: There is a 17% discrepancy between the three compressibility

corrections. Of the three, experience has shown the Karman-Tsien rule to be more accurate.

11.4  For the pressure coefficient on the airfoil:

c-_G 041

& Ji-m2 :m |

0.5

0.6

0.7

0.8

C, -0.43 -0.447

-0.473

105

-0.513

-0.574

-0.683



_./'2 .

-‘--l/;o-.l-,. .:

_...Qa-

i
P
"

i
S
A
{

oV

N
_ !
N FFrond i) — GlawsrT ;
|
{
i
} : .
t A M =074 J
!
—+ J + —t— | +
C.4 a.5 O.G 0.7 a8
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11.5  When M = M, then p at the minimum pressure point is clearly pe;.

P Pa (P_CLJ[B"-J = (0.528)(1.524) = [0.803]

P. P. Po/\Pa
—A rA——
Evaluated Evaluated
atM=1 atM=038

11.6  From Appendix A:

ForM,=0.5, o =1.186
P.,

For M=0.86, P =1.621

2

C,=———— =(0.7316 - 1) = | 1.53
sy ~07516-)

Check: Using Eq. (11.58)

CP = 2 1. . -1
S P AntS VE J
2 (1+02(05)2)”_1 (75
(14)(05)* [\ 1+ 02(086)* -
It checks!
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117 First, caleulate Cy, at point A from the information in Figure 11.5(a). The actual
pressure coefficient is

2
Cp,A = =~ (EA - J
¥y M, \p,

where

Pa _ Pa Po
P P, P

From Appendix A (interpolating between entries for more accuracy for this problem),

ForM,=03: 2o =1.064

For M, =0435 X2 =1139

Pa
Thus,
Con= 2 2[1.064_1) —_1.045
(14)(03)"\ 1139

From the Prandtl-Glauert rule,

Cpo=Cpa /1-M2 = (=1.045)/1~ (03)* =-0.9969

For the case of part (c) where Mw = 0.61, again using the Prandtl-Glauert rule,

C —
Coa= pe 09969 1.258

S1-M2 - (0617

2 [ p;
Con = GA‘}
oy Mi\p, )

ot,
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2 ) 2 -
gﬁ_znykaA+12204xaﬁn(—Lzm)+
P., 2 2

1=06723

However,

Pa _ Pa P, where Po for M, =~ 0.611s 1.286

Po Po Po P
Thus,
Da _ Pa/p. _ 06723 0523
P, P./P. 1286
Hence,

Do =191,

Pa

" From Appendix A, for Po _ 1.912, M =11.01

Pa

This is close enough. Hence, given the numbers in Figure 11.5(a), the pumbers in Figure
11.15(c) are consistent with the laws of physics.

11.8 There is a three-dimensional relieving effect for the flow over a sphere. The flow over
a cylinder is two-dimensional - in order to get out of the way of the cylinder, the flow can
move only upwards or downwards. This means it must greatly accelerate to get out of the
way of the cylinder. In contrast, the flow over a sphere 1s three-dimensional — it can move
not only upward or downward but also sideways. This extra degree of freedom means that
the flow does not have to speed up so much in flowing over the sphere. Hence, the
freestream Mach number of the sphere 1s higher in order to achieve sonic flow on the sphere
— 1.e., the critical Mach number is higher.
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CHAPTER 12

12.1 Constder a = 5°=0.0873 rad.

‘- 42a _ 4(0.08273-) Moyves
M1 J@26)? -1

From exact theory (Prob. 9.13): ¢, =0.148

% error = % x 100 = 1.69%

Ca= LA ¢, & =(0.1455)(0.0873) = v

JME —1
From exact theory (Prob. 9.13): ¢4=0.0129

% error = 0’01%90";20;12 7 x100=1.53%

(b) a=15°=0.2618 rad

4o :
= 2-0.43 :i
v .

From exact theory (Prob. 9.13): ¢, = 0.452

04520426

‘ x 100 =3.47%
0452

% erTor =

ca= ¢, a=(0.436)(0.2618) =0.114

From exact theory (Prob. 9.13): ¢4=10.121

% error = 9:1271——1"2-(;;133- x100=57%

() a=30"=0.5236rad
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c = 40! - 4(05236) :

oMo Jeer -
From exact theory (Prob. 9.13): ¢, =1.19

% error = 11—%_1%7-3— x 100=26.7%

ca=c, o= (0.873)(0.5236) = Ei.457‘i
From exact theory (Prob. 9.13): ¢q=0.687

% error = w=33-5%

0.687

Conclusion: Atlow «, linear theory 1s reasonably accurate. However, its accuracy
deteriorates rapidly at high a. This is no surprise; we do not expect linear theory to hold for
large perturbations. It appears that linear theory is reasonable to at least 5°, and that it is
acceptable as high as 15°. At 30° it 1s unacceptable. Keep in mind that the above comments

pertain to the lift and wave drag coefficients only. They say nothing about the accuracy of
the pressure distributions themselves.
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qm 7p M2 }/ Mi pm
M2 C
P T ey
P. 2
Cp== 26 =% 20 =+ _Zﬁ
m (2.6)* -1 24
or,
C,=0.83330
M? C .
P T MYy L, (1426708333
pm 2 2
P - +30430+1
P.

Hence: Examining the physical picturé: recalling o= 5° = 0.873 rad.

P1 _ 3943 (0873)+1=
o 2

From exact theory (Prob. 9.13): P2~ 07022

L]

% error = 0.7022-0.6558 x 100=6.6%
0.7022 :

BPs 139430+1=3.943 (0873)+1=
P., ‘

From exact theory (Prob. 9.13): ‘p—z =1.403

@

14031344
% error = mm?ol‘:?)— x 100=4.2%
1 . o]
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(b) For a=15°=0.2618 rad:

P2 _ 39439 +1=-3.943 (2618) + 1= -0.0322 (physically impossible)

po:

The result from exact theory (Prob. 9.13) is 22 =0.315

@

P2 239430 +1=3.943 (2618) + 1=
pm

From exact theory (Prob. 9.13): Ps _5 500

O

% error = 2220252 100=10.7%

2.529

(¢) For a=30°=0.5236 rad

P2 _ 39430+ 1 =-3.943 (0.5236) + 1 = -1.064 (physically impossible)
P..

The result from exact theory (Prob. 9.13) is P2 L 00725

o

s 239430 +1=3.943 (0.5236) + 1 =5.065
P

From exact theory (Prob. 9.13): Bs 5.687

Y

% erTor = 56873065 x 100 = 46%

5.687

Conclusions: (1) Pressures predicted by linear theory rapidly become inaccurate as o.
increases. (2) Pressures predicted by linear theory are reasonable only at low values of o,
say below 5°. (3) At each value of o, the % error is much greater for pressure than for lift
and wave drag coefficients. (Se¢ Prob. 12.1). Hence, linear theoty works better for ¢, and
cq than it does for p. 'What happens.is that the inaccuracies in p on the top and bottom
surfaces tend to compensate, yielding a more accurate aerodynamic force coefficient.
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y M2 C
123 2=l = 0 Ghere Gyt 20
P 2

M2 -

———=%0.70716
NOS

P, UH3)*707D8

Do 2
2 —i44550+1
P

———————— e Y0

M =3

Surface 2: 6 =5°=0.08727 rad.

P2 = 4455 08727y + 1=0.6112
P

Surface 3: 0 =25°=0.4663 rad

Ps — 4455 (4363)+1=-0.9439
Ps -
Note: Although a negative pressure is
B C g not physically possible, in order to
Surface 4: 8 =25°=0.4363rad ' calculate the net force, we must carry
' ' 2 it as suich: :

Po = 4455 (4363)+1=2.944

=
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Surface 5: 8 =5°=0.08727 rad

Ps — 4455 (08727)+1=1 3888
pm

b4
c, = 2 —- = (p_,,_&_] 00325°+(&~-p—zj cos5° | (From Prob. 9.14)
7, M) ¢ psc pm pw puc

c, = ——2—2 £ [(2.944 + 0.9439) cos 25° + (1.3888 — 0.6112) cos 5°]
93 <

c, =0.682 £ However, £ 0.5077 (From Prob. 9.14)
c c

¢, = (0.682)(.5077) =

a=— % (p—‘*-fi]'sinzsu[&—&-J sin5°
y M{ ¢[\p., P. P Po

Ca= (—]4—)2(?)? (5077) [(2.944 + 0.9439) sin 25° + (1.3888 — 0.6112) sin 5°]
Ca=
Comparison
Exact (Prob. 9.14) Linear Theory % Error
c, 0418 0.346 - 172%
Cq 0.169 0.1089 35.6%
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CHAPTER 13

13.1
e}
(0, 0.0684) ,Cs
~ e
~ Ve
4
3 [O\
4 .
2/ T
-~
(0.0127,0)
At point 1:
a1 = /T, = /(14)(287)(288) =340 m/sec
Vi=Jul+vi = /(639)7 H232.6) =680 m/sec
M, = Vi _ 680 _ 2
a, 340
6;=Tan" L = Tan™ (u——-23 2 '6)'= 20°
u, 639
vi = (M) = 26.38°
K_=0+v=20+2638=4638°
At point 2:

o= JIRT, = J(14)(287)(288) = 340 m/sec

V>, =680 m/sec
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8, =0°
vy =26.38°
Ki=0-v=-2638°

At point 3:
03 ="2[K ) +(K.)] = V2 (46.38 -26.38) = 10°
v3="2 [K ) +K+)] = V2 (46.38 —26.38) = 36.38°
M;=2.4 |

To obtain the other flow vaniables at point 3, note that:

Po, =7.824 and Poy _ 14.62

Py Ps

py= B3 Pos Po o (__1__) (1)(7.824)(1 atm) =

ng pol Py 14‘62
T, T,
L 1.8 and 2 =2.152
T, T
S [_T_J (1)(1.8)(288) = 240.9°K
3 To:' Tu ’1'"1 ! 2152 ) '

a3 = \IRT; = /(14)(287)(240.9) =211.1 m/sec
V3 =Maaz =24 (311.1) = 746.6 m/sec
ug = V3 cos 83 = 746.6 cos 10° =m
3=V sin 85 = 746.6 sin 10° = [129.6 m/sed

To locate point 3:

Along the Ci Charactenistic:
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Bave="2(0,+0;)=%(0+10)=5°

Bave = V2 (g + p3) = ¥a (30° +24.62°) =27.31°

%.y': = Tan (Bye + Have) = Tan (5° +27.31°) = 0.6324
X
Thus:
¥ = 0.6324x —0.00765 a1

Along the C. characteristic:

Rave = Y2 (g + p3) = Y2 (30 + 24.62) = 27.31°

% =Tan (Qave - Mave) = Tan (15° - 27.31°) = -0.2182
X
y=-0.2182 x + 0.0684 @)

Point 3 lies at the intersection of Egs. (1) and (2)
y=0.6324 x -0.00765
y=-0.2182 x + 0.0684

Solving simultaneously: x = 0.0894

y = 0.0489

Thus: {(x3, v3) = (0.0894, 0.0489)
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CHAPTER 14

14.1 f//
—— - P2
s

M,

C, = (Cp_: -C, )cosoa

Cg= (Cp3 —sz) sin o

() Using straight Newtonian theory:
Cp=2sin’ «

For oe = 5%
C,, =2sin’ 5°=0.0152

C, =0

Pz

¢, = 0.0152 cos 5°=(0.0151
cqg = 0.0152 sin 5° =[0.0013

For o = 15°:

C, =2sin”15°=0.1340, C, =0
¢, =0.1340 cos 15° =

ca = 0.1340 sin 15° =[0.0347]
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For o= 30°:

C, =2sin*30°=0.5

p

¢, = 0.5 cos 30°=[0.433
ca=0.5 sin 35° =
(b) Using modified Newtonian:

- .2
Cp=C,_ sin"a

_Po=Pwo _ Po—P= 2 [P,
Cpm - - - 2 -
' Q. Y 7y M_\p.,

“M?2p.

2

2

b = ———— (9.181-1)=1.729 -
=~ (14)(2.6) _

Fora=15°

C,, =1.729 sin® 5°=0.0131
¢, =0.0131 cos 5°=[0.013]

cq=0.0131 sin 5°=0.00114

For oo = 15°

C,. =1.729 sin* 15°=0.1158

¢, =0.1158 cos 15°=[0.1119
ca=0.1158 sin 15° =[0.030)

For o =30°

C,, = 1.729 sin’ 30° =0.4323

¢, =0.4323 cos 30°=
cg=0.4323 sin 30° =
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Comparison;

Mod.
: Exact c, Newtonian Newtonian
o4 (Prob. 9.13) c, % error c, % error
5 0.148 00151 90 0.0131 91
15° 0.452 0.129 71 0.1119 752
30° 1.19 0.433 63.6 0.374 68.6
Mod.
Exact ¢ Newtonian Newtonian
vd (Prob. 9.13) c, % exror Cq % error
5¢ 0.0129 0.00132 90 0.00114 91
15° 0.121 0.0347 71 0.03 75.2
30° 0.687 0.25 63.6 0216 68.6

Conclusion: Newtonian theory gives terrible results for a flat plate a moderate o at Iow

Supersonic Mach numbers.
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From Newtontan theory:

C, =2 sin® a =2 sin” 20° = 0234



c, =0.234 cos cx=
cs=0.234 sin o=

From shock-expansion theory:

On the top surface: va=v; +0=1162+20=136.20

This 1s beyond the maximum expansion angle. Hence, a “void” exists on the top surface,
re,py=0. \

On the bottom surface: From the 8-3-M diagram,

p=24.9°
Mn] =M; sin p=20sin24.9°=8.4

Ps _er15

P

From Prob. 9.13:

and
sine
Cqg= C
cosa
2 : o
C, = ———=5 (82.15 - 0) cos 20° = 0.2757
14)(20) _
cqg= 0.2757 Tan 20° = 0.100 '
For ¢,: % error = M:zm T
02757
Forcg: % error= M =20%
010

Note: Newtonian theory works much better for blunt bodies, i.e., for large values of 6.
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143

(a) Use Eq. (14.7) to estimate the pressure at point A. We first need to obtain
Cp.max, which is a function of po2/pe. From Appendix B for My = 20, po2/pe = 0.5155 x
10°. Hence,

Cpmax = 2 . (Po,z _1] = __2_5. (5153-1)=1.837
y Mo\p. / (14)(20)

From Eq. (14.7), at point A on the surface

C, = Cpma sin” 0= (1.837) sin® 20° = 0.2149

Pa

Since
2 p
CP.A - 2 (—A“ J
¥y M \p.
then,
MicC N2
Pa_¥ MGy L AHQ01(02149) o
P 2 2
Hence,

Pa=61.17 (3.06)=187.2 1b/. i
(b) The stagnation temperature is found from Eq. (8.40)

Loyt M.2=1+0.2(20)* =81
T 2

@

Assuming an 1sentropic flow from the stagnation point to point A,
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or.

r
P_A:@:[T_A]
pe,l po‘2 /pm

-]

Pl
% = (%—%] 7 =(0.1187)°% =0.5439
)

M

T, (T '
e _A( ] T.= (0.5439)(81)(500) = p2,028°R]

T, \T,

[s) L]

(Please note. Relative to our discussion in Problems 8.17 and 8.18, we know this
estimate of Ta to be too large because we are not taking into account the effect of
chemically reacting flow.)

(¢) At point A, for an isentropic flow, psa = po2

7
— - ')/ ! :
Pos _ (1+——7 IMi)y o Poz/Pe  O133 g 4oy
P 2 Pa/Pa 6117

_ y—1 =
1+ M2 = (3427)7 = (84272 = 1.8385

M2 = (1.8385 - 1) _2_i = (0.8385)(5) = 4.1925
y-.——

Ma =2.05

(@) ax= GRT, = \f(1;4)(1716)(22,028) =7275 fi/sec

Va = aa Ma = (7275)(2.05) =[1.49 x 10° ft/sed

Note: Once again, this estimate of V4 is too high because T , hence aa, is too high.

Also pote: The purpose of this problem is to illustrate that, from the Newtonian sine-
squared law for pressure variations, the other-flow field quantities can also be obtained.




CHAPTER 15

15.1

(2) Since the plates are infinite in length, u = u(y) only. Also, v=0, i.e,; the flow1s
in the x-direction only. The governing equation is Eqg. (15.18a), which reduces to the
following u =u(y), v= 0 and p = const.

Integrating:

dua
p — =const = ¢
dy '

pu=ciy + ¢
Aty=0,u=0: ¢3=0
Aty=h,u=u: pu.=ch

h

pu= ’u::" y, or|u =, (g "’

The velocity variation is linear between the plates.

9]

Thus:
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i [T]” TD+110;( 320 )3’2 288164110 _

| L = 1.084
u. \T.) T+110 \28816/ 320+110
w=1.084 1o = 1.084 (1.7894 x 107) = 1.94 x 10° —<&

m SeC
_ s [ 30 2
1=(1.94x107) ou 5.82 x 10™ N/m]

The shear stress is constant, and hence is the same on the top and bottom walls.

152

u=u(y), v=0,p=px)

dx dy \' dy
du (dp)
—— - . +C
'udy dx yTa
2 -
e (B e

2
dx/ 2u  p H

Aty=0,u=0. Thusc; =0
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Aty=h,u=0. Thus,

dx/ 24 p dx
RCERGE
dx/ 2u dx/ 2u
1 dp 7. 5 . -
u=— | —| (hy-y9) The velocity profile is parabolic.
2 \dx
G (6} y, (&) b
dy dx/ u dx/ 2p
du
On the bottom plate, y=0: t=p .
y

On the top plate, y=h: t=pn (—El—l) since dy 1s negative, 1.e., the distance away from the top
y

plate is in the downward (negative direction)

()2 () 2

For both the top and bottom walls,

) (@)
2 \ax

Shear styess varies linearly with the magnitude of the pressure gradient.

Note: Due to the content of chaﬁters 16,17, and 18, no homework problems are
required., ‘
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CHAPTER 19

19.1 1 mihr=0.4471 m/sec

(141——) M = 63.04 m/sec
hr 1 mi/hr

_ paVae _ (123(63.04)(16) _

Re 6.93 x 10°
e 1.7894 x 107
() o 1328 1328 oo

JRe, 693 x 10°
Noting that drag exists on both the bottom and top surfaces, we have
Dr=2 o S Cr=2(%2)(1.23)(63.04)%(9.75)(1.6)(5.04 x 10 =

0074 . 0074 ' B
Ce= - _=3.17x10
O e e = G305y

(CHun 317 x 107 -3
De= ~—£lumb (384 38.4)=
e er = 2T (8 - AL

Note that turbulent skin friction is 6.28 times larger than the laminar value.

192 @ = > G016 =3.04 x 10° m= [0.304 cm

JRe, 693 x 10°

b) = 037x _ (037)1.6) _ 2.54%x10%m=

Rex \/5 (6.93){1 0-6 )1/5

19.3

Transif2on

v

s ————




Q= V2 (1.23)(63.04)* = 2444 N/m*

105 p:c-\]c: (Xl _-_Xo)
He

Re.=5x

5% 1071,  (5x10°)(17894 x 107°)
p.V (1.23)(63.04)

@ m

(x1-Xo) = =0.1154m

Laminar drag on (x; - Xo):

1328

V5 x 107

Df= qw S Cr= (2444)(0.1154)(9.75)(1.878 x 10°) =5.16 N

Cr= =1.878x 103

Turbulent drag on (X1 - X,):

0.074

= — -3

-3
Dee (i?:g_w_J 16— 1473 N
1878 x 10~

‘From Prob. 19.1, the turbulent drag on (x, — x,) was 241.5 N. Hence,
Turbulent drag on (xp —X1) =241.5 - 14.73 =226.8 N

Total skin friction drag = [Laminar drag on (x; — %,)] + [Turbulént drag on (xs — x3)]

=5.16+226.8 =

194 At standard sea level: po=0.002377 shug/ft

Te=519°R

A= IRT = J(14)(1716)(519) = 1117 fi/sec

Vo= Mo 20 = 4 (1117) = 4468 fi/sec
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AY
Re, = PV (.002377)(4468)(57/12) —118x%107
i 37373 x 10°
Incompressible Cs= C, = 1328 1328 =3.866x 107
» [Re. 118 x 107

From Fig. 18.8:

C/C, ~0.85;C=3286x10"

Ds= o S Cr= (V2)(.002377)(4468)*(5/12)(3.286 x 107

Ds= 13248 1b| on one side of the plate.

19.5  For incompressible flow:

c o 0OTH 0074 e 10t

v Rec11'5 (1.18 X 107)[/5

From Fig. 19.1: C;~1.6x 107
(The effect of Mach number is to reduce C; by about 44% in this case.)

From Prob. 19.4, the laminar value of Dris 3.248 fora value of Cr=3.286x% 107
Hence, the turbulent value is

De= [_2_85__’.51_0;) (3.248) =

3286 x 107

19.6  From Eq. (18.32):

ou Loy B_G [ﬂiﬁl—J M
& & & )
From Eq. (18. 41) with P
A, ch, & [ ého]
+ ° 2
pu—=tpv £y a’y 7 3 2

Egs. (1) and (2) are identical. Hence
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ho = ¢y + ¢ u, where ¢ and ¢, are constants.

Atthe wall, u =0 and h, = h, =hy. Hence,

hw=¢c1+0, or ¢ =hw.
At the boundary layer edge:

hoc =ci+ U =hy+oru,

b, -k,
Cy =
uC
Thus:
h, -h,
h,=c;+cu=hy+ ———n1
ue

Since

h=¢, T, then

To=Tw+ (T, - T,}—

19.7 From Eq. (18.70),

i 5 -0.63 duc
q, = 0.763 Pr’® (p.pc) ‘/K (haw —bs) M -

where, from Eq. (18.82), the velocity gradient is given by

du, 1 2(p.—P.) @
d« R P.

The subscript e denotes properties at the outer edge of the stagnati-on point boundary layer,
i.e., pe and p, are the inviscid stagnation point values of pressure and density. The speed of
sound i the ambient atmosphere is

20 = [JRT,, =+/(14)(287)(2461) =314.5 m/sec

(a) For V= 1500 m/sec, we have
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@

a_, 3145

V.
_ - 1500 —477

From Appendix B (nearest entry),

Poz _195p

Pas

and from Appendix A (nearest entry),

T,
= =5512
T

Hence,
Poz = pe = (29.52)(583.59) = 1.723 x 10* N/m?*
To=Te=(5.512)(246.1)= 1357 K

p, 1723 x 10* _
RT, (287)(1357)

¢

0.044 kg/m®

lil

Pe

From Southetland’s law, Eq. (15.3), using the standard sea level value of p, = 1.7894 x 10°°
kg/(m)(sec) at T, = 288K, we have

&_(L]m To+110_(1357)m[288+110j o
u, \T,) T,+110 \288/) \1357+110/

e

Le = (2.77)(1.789 x 107) = 4.957 x 10”® kg/(m)(sec)

From Eg. (2) above

2 _ ‘ 4 _ -
du, 1 |2(p.-P.) 1 \/2(1.723 x 10°—58359) . 00 otce
ax R p. (0.0254) 0.044

Assuming a recovery factor r = 1, then haw = h,.

-

2 : V 2 - . ’ : 2
haw = ho = hio + V; = Tt =2 =(1008)(246.1)+£1ig-0—)~

=248 x 10° +11.25 x 10°=13.73 x 10° joule/ke

haw = ¢ Tw = (1008)(400) = 4.032 x 10° joule/kg
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The “rho-mu” product 1s

m sec

Zz
pette = (1.044)(4.957 % 10%) = 2.18 x 10° &)

- From Eq. (1) above

- . Hduc
q, =0.763 Pr 0.6 (Pelte) dx (haw—hw)

=0.763 (0.72)"% (2.18 x 10%)(3.42 x 1042 (13.73 - 4.032) x 10°

3693 JOUES ]3035 WAL
sec(m”) m-

(b) For V,,=4500 m/séc, we have

V .
M= o = P00y
a, 3145

From Appendix B (interpolated)

Po,2

Pw

=264.0

From Appendix A (interpolated)

L =4194
T,

e

Thus:

pe = (264)(583.59) = 1.54 x 10° N/m’”

T.=41.94 (246.1) = 10321 K

NS
P 154 x 10 _ 4 052 kefm®

RT, (187)(10,321)

“, _(g‘ij” To+110_(10321)”[ 288+110 j 8186
u, \T,) T.+110 \ 288 10321+110 '

Pe =




1o = (8.186)(1.7894 x 10”%) = 1.465 x 10™ kg/(m)(sec)

From Eq. (2)
d 2 — 4 5 _ - .
u, 1 [2(p.-p.) 1 \/2(154 x 10°-58359) oo o
ix R\ p. (0.0254) 0.052

V 2
haw = heo + ; =248%x10° + =1.037 x 10 joules/kg

(4500)>
2

Dette = (0.052)(1.465 x 107 = 7.62 x 106 X&)
4
m Sec

- . du, .
q,, = 0.763 Pr®® (p.p.) 1’-3 (haw — hw)

=0.763 (0.72) % (7.62 x 10%)(9.56 x 10%"* (1.037 x 107 - 4.032 x 10%)

watts

ml

2218x10*

Comparing the results from parts (a) and (b), we note

[qw)wm 2218 x 10* _

( : ) 3693
q,,

v=71500

‘When the velocity increased from 1500 m/sec to 4500 m/sec, a factor of 3, the heat transfer
increased by a factor of 60. This illustrates the rapid growth of the importance of
aerodynamic heating as vehicles fly faster, well into the hypersonic flight regime. A simple,
approximate analysis for aerodynamic heating which assumes very high Mach numbers (so
that hay >> hy) indicates that aerodynamic heating is proportional to V..*. (See for example,
Anderson, Introduction of Flight, 4% ed., McGraw-Hill, 2000, page 570.) For the present
example, n going from a relatively low, not quite hypersonic condition M. =4.77) to a
relatively high Mach number of M, = 14.31, the increase was even faster.
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